Newly evolving threats to public safety and security, related to attacks in public spaces, are catching the attention of both law enforcement and the general public. Such threats range from the emotional misbehaviour of sports fans in sports venues to well-planned terrorist attacks. Moreover, tools are needed to assist in the search for wanted persons. Static solutions, such as closed circuit television (CCTV), exist, but there is a need for a highly-portable, on-demand solution. Unmanned aerial vehicles (UAVs) have evolved drastically over the past decade. Developments are observed not only with regards to flight mechanisms and extended flight times but also in the imaging and image stabilization capabilities. Although different methods for facial recognition have existed for some time, dealing with imaging from a moving source to detect the faces in the crowd and compare them to an existing face database is a scientific problem that requires a complex solution. This paper deals with real-time face recognition in the crowd using unmanned aerial vehicles. Face recognition was performed using OpenCV and Dlib libraries.
The increase in flying time of unmanned aerial vehicles (UAV) is a relevant and difficult task for UAV designers. It is especially important in such tasks as monitoring, mapping, or signal retranslation. While the majority of research is concentrated on increasing the battery capacity, it is also important to utilize natural renewable energy sources, such as solar energy, thermals, etc. This article proposed a method for the automatic recognition of cumuliform clouds. Practical application of this method allows diverting of an unmanned aerial vehicle towards the identified cumuliform cloud and improving its probability of flying into a thermal flow, thus increasing the flight time of the UAV, as is performed by glider and paraglider pilots. The proposed method is based on the application of Hough transform and Canny edge detector methods, which have not been used for such a task before. For testing the proposed method a dataset of different clouds was generated and marked by experts. The achieved average accuracy of 87% on the unbalanced dataset demonstrates the practical applicability of the proposed method for detecting thermals related to cumuliform clouds. The article also provides the concept of VilniusTech developed UAV, implementing the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.