We propose a kinematic approach to searching for the stars that could be formed with the Sun in a common "parent" open cluster. The approach consists in preselecting suitable candidates by the closeness of their space velocities to the solar velocity and analyzing the parameters of their encounters with the solar orbit in the past in a time interval comparable to the lifetime of stars. We consider stars from the Hipparcos catalog with available radial velocities. The Galactic orbits of stars have been constructed in the Allen-Santillan potential by taking into account the perturbations from the spiral density wave. We show that two stars, HIP 87382 and HIP 47399, are of considerable interest in our problem. Their orbits oscillate near the solar orbit with an amplitude of ≈250 pc; there are short-term close encounters to distances < 10 pc. Both stars have an evolutionary status and metallicity similar to the solar ones.
Based on a new version of the Hipparcos catalogue and an updated Geneva-Copenhagen survey of F and G dwarfs, we analyze the space velocity field of ≈17000 single stars in the solar neighborhood. The main known clumps, streams, and branches (Pleiades, Hyades, Sirius, Coma Berenices, Hercules, Wolf 630-αCeti, and Arcturus) have been identified using various approaches. The evolution of the space velocity field for F and G dwarfs has been traced as a function of the stellar age. We have managed to confirm the existence of the recently discovered KFR08 stream. We have found 19 Hipparcos stars, candidates for membership in the KFR08 stream, and obtained an isochrone age estimate for the stream, 13 Gyr. The mean stellar ages of the Wolf 630-αCeti and Hercules streams are shown to be comparable, 4-6 Gyr. No significant differences in the metallicities of stars belonging to these streams have been found. This is an argument for the hypothesis that these streams owe their origin to a common mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.