In order to investigate how high school students and researchers perceive science-related (STEM) subjects, we introduce forma mentis networks. This framework models how people conceptually structure their stance, mindset or forma mentis toward a given topic. In this study, we build forma mentis networks revolving around STEM and based on psycholinguistic data, namely free associations of STEM concepts (i.e., which words are elicited first and associated by students/researchers reading “science”?) and their valence ratings concepts (i.e., is “science” perceived as positive, negative or neutral by students/researchers?). We construct separate networks for (Ns = 159) Italian high school students and (Nr = 59) interdisciplinary professionals and researchers in order to investigate how these groups differ in their conceptual knowledge and emotional perception of STEM. Our analysis of forma mentis networks at various scales indicate that, like researchers, students perceived “science” as a strongly positive entity. However, differently from researchers, students identified STEM subjects like “physics” and “mathematics” as negative and associated them with other negative STEM-related concepts. We call this surrounding of negative associations a negative emotional aura. Cross-validation with external datasets indicated that the negative emotional auras of physics, maths and statistics in the students’ forma mentis network related to science anxiety. Furthermore, considering the semantic associates of “mathematics” and “physics” revealed that negative auras may originate from a bleak, dry perception of the technical methodology and mnemonic tools taught in these subjects (e.g., calculus rules). Overall, our results underline the crucial importance of emphasizing nontechnical and applied aspects of STEM disciplines, beyond purely methodological teaching. The quantitative insights achieved through forma mentis networks highlight the necessity of establishing novel pedagogic and interdisciplinary links between science, its real-world complexity, and creativity in science learning in order to enhance the impact of STEM education, learning and outreach activities.
Loyal buyer-seller relationships can arise by design, e.g. when a seller tailors a product to a specific market niche to accomplish the best possible returns, and buyers respond to the dedicated efforts the seller makes to meet their needs. We ask whether it is possible, instead, for loyalty to arise spontaneously, and in particular as a consequence of repeated interaction and co-adaptation among the agents in a market. We devise a stylized model of double auction markets and adaptive traders that incorporates these features. Traders choose where to trade (which market) and how to trade (to buy or to sell) based on their previous experience. We find that when the typical scale of market returns (or, at fixed scale of returns, the intensity of choice) become higher than some threshold, the preferred state of the system is segregated: both buyers and sellers are segmented into subgroups that are persistently loyal to one market over another. We characterize the segregated state analytically in the limit of large markets: it is stabilized by some agents acting cooperatively to enable trade, and provides higher rewards than its unsegregated counterpart both for individual traders and the population as a whole.
Technological progress is leading to proliferation and diversification of trading venues, thus increasing the relevance of the long-standing question of market fragmentation versus consolidation. To address this issue quantitatively, we analyse systems of adaptive traders that choose where to trade based on their previous experience. We demonstrate that only based on aggregate parameters about trading venues, such as the demand to supply ratio, we can assess whether a population of traders will prefer fragmentation or specialization towards a single venue. We investigate what conditions lead to market fragmentation for populations with a long memory and analyse the stability and other properties of both fragmented and consolidated steady states. Finally we investigate the dynamics of populations with finite memory; when this memory is long the true long-time steady states are consolidated but fragmented states are strongly metastable, dominating the behaviour out to long times.
Abstract. In this paper we investigate the possibility of spontaneous segregation into groups of traders that have to choose among several markets. Even in the simplest case of two markets and Zero Intelligence traders, we are able to observe segregation effects below a critical value T c of the temperature T ; the latter regulates how strongly traders bias their decisions towards choices with large accumulated scores. It is notable that segregation occurs even though the traders are statistically homogeneous. Traders can in principle change their loyalty to a market, but the relevant persistence times become long below T c .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.