Ispinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N , N -bidentate ligands ( R )- and ( S )-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure ( R )- and ( S )-forms of the ligand, depending on the organometallic moiety, either the S M , R or R M , S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = η 6 - p -cymene) compounds, whereas the R M , R or S M , S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = η 5 -pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the ( R )-enantiomer of the ligand being more potent than the ( S )-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active.
Background: Innate immunity response to local dysbiosis seems to be one of the most important immunologic backgrounds of chronic rhinosinusitis (CRS) and concomitant asthma. We aimed to assess clinical determinants of upper-airway dysbiosis and its effect on nasal inflammatory profile and asthma risk in young children with CRS. Methods: We recruited one hundred and thirty-three children, aged 4-8 years with doctor-diagnosed CRS with or without asthma. The following procedures were performed in all participants: face-to-face standardized Sinus and Nasal Quality of Life questionnaire, skin prick test, taste perception testing, nasopharynx swab, and sampling of the nasal mucosa. Upper-airway dysbiosis was defined separately by asthmaspecific microbiome composition and reduced biodiversity. Multivariate methods were used to define the risk factors for asthma and upper-airway dysbiosis and their specific inflammatory profile of nasal mucosa. Results: The asthma-specific upper-airway microbiome composition reflected by the decreased ratio of Patescibacteria/Actinobacteria independently of atopy increased the risk of asthma (OR:8.32; 95%CI: 2.93-23.6). This asthma-specific microbiome composition was associated with ≥ 7/week sweet consumption (OR:2.64;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.