This paper presents the influence of the type and structure of reinforcement, on the epoxy resin matrix polymer composites mechanical and ballistic properties. Aramid, basalt, glass fabrics and their hybrid systems were used as reinforcement. Impact strength according to Izod and "falling arrowhead", flexural strength and structure of the obtained composites were tested. The specific gravity was also determined. The aramid-glass hybrid composites showed high flexural strength (397 MPa) and Young's modulus (21 GPa). However, aramid-basalt composites had high impact strength (116 kJ/m2) and impact energy absorption (45 J).
A mathematical model of simultaneous cobalt deposition and hydrogen evolution was developed and applied to the electroreduction process of 5 mM Co2+ ions investigated by cyclic voltammetry (CV) technique at different hydrogen ion concentrations (pH=2, 3, 4). The kinetic parameters of such a complex process were determined, and the validity of the model and its sensitivity to changes in individual parameters were verified. The relative value of the approximate standard deviation (ASD%) was used to determine the degree of fit of the model to the experimental data. The catalytic effect of cobalt on the hydrogen evolution process was comprehensively confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.