Based on the growing interest in encephalography to enhance human–computer interaction (HCI) and develop brain–computer interfaces (BCIs) for control and monitoring applications, efficient information retrieval from EEG sensors is of great importance. It is difficult due to noise from the internal and external artifacts and physiological interferences. The enhancement of the EEG-based emotion recognition processes can be achieved by selecting features that should be taken into account in further analysis. Therefore, the automatic feature selection of EEG signals is an important research area. We propose a multistep hybrid approach incorporating the Reversed Correlation Algorithm for automated frequency band—electrode combinations selection. Our method is simple to use and significantly reduces the number of sensors to only three channels. The proposed method has been verified by experiments performed on the DEAP dataset. The obtained effects have been evaluated regarding the accuracy of two emotions—valence and arousal. In comparison to other research studies, our method achieved classification results that were 4.20–8.44% greater. Moreover, it can be perceived as a universal EEG signal classification technique, as it belongs to unsupervised methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.