Nanoemulsions are considered as the most promising solution to improve the delivery of ophthalmic drugs. The design of ophthalmic nanoemulsions requires an extensive understanding of pharmaceutical as well as technological aspects related to the selection of excipients and formulation processes. This Review aims at providing the readers with a comprehensive summary of possible compositions of nanoemulsions, methods for their formulation (both laboratory and industrial), and differences between technological approaches, along with an extensive outline of the research methods enabling the confirmation of in vitro properties, pharmaceutical performance, and biological activity of the obtained product. The composition of the formulation has a major influence on the properties of the final product obtained with low-energy emulsification methods. Increasing interest in high-energy emulsification methods is a consequence of their scalability important from the industrial perspective. Considering the high-energy emulsification methods, both the composition and conditions of the process (e.g., device power level, pressure, temperature, homogenization time, or number of cycles) are important for the properties and stability of nanoemulsions. It is advisible to determine the effect of each parameter on the quality of the product to establish the optimal process parameters’ range which, in turn, results in a more reproducible and efficient production.
Control over polymorphism and solvatomorphism in API assisted by structural information, e.g., molecular conformation or associations via hydrogen bonds, is crucial for the industrial development of new drugs, as the crystallization products differ in solubility, dissolution profile, compressibility, or melting temperature. The stability of the final formulation and technological factors of the pharmaceutical powders further emphasize the importance of precise crystallization protocols. This is particularly important when working with highly flexible molecules with considerable conformational freedom and a large number of hydrogen bond donors or acceptors (e.g., fluconazole, FLU). Here, cooling and suspension crystallization were applied to access polymorphs and solvates of FLU, a widely used azole antifungal agent with high molecular flexibility and several reported polymorphs. Each of four polymorphic forms, FLU I, II, III, or IV, can be obtained from the same set of alcohols (MeOH, EtOH, isPrOH) and DMF via careful control of the crystallization conditions. For the first time, two types of isostructural channel solvates of FLU were obtained (nine new structures). Type I solvates were prepared by cooling crystallization in Tol, ACN, DMSO, BuOH, and BuON. Type II solvates formed in DCM, ACN, nPrOH, and BuOH during suspension experiments. We propose desolvation pathways for both types of solvates based on the structural analysis of the newly obtained solvates and their desolvation products. Type I solvates desolvate to FLU form I by hydrogen-bonded chain rearrangements. Type II solvates desolvation leads first to an isomorphic desolvate, followed by a phase transition to FLU form II through hydrogen-bonded dimer rearrangement. Combining solvent-mediated phase transformations with structural analysis and solid-state NMR, supported by periodic electronic structure calculations, allowed us to elucidate the interrelations and transformation pathways of FLU.
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.