Bioassay-guided isolation of bioactive compound is a modern and efficient technique in metabolites screening. It may shorten the total time of the entire process and reduce some costs of it. The aim of this paper was to fractionate and isolate alkaloids by developing an innovative vacuum liquid chromatography method for a species of Narcissus c.v. ‘Hawera’ rarely investigated so far and establishing the inhibitory activity of acetylcholinesterase (AChE). The studies consisted of the extraction of plant material by modern pressurized liquid extraction (PLE), followed by the isolation of alkaloidal fractions. For this purpose, the pioneering gradient vacuum liquid chromatography (gVLC) technique was employed by using two sorbents in various proportions packed in polypropylene cartridges for the first time. This step was performed in order to pre-clean the samples but also to establish the best combination of sorbents which permits obtaining potentially strong AChE inhibitors. The collected fractions were examined by HPLC/ESI-QTOF-MS in order to compare which combination of sorbents would allow us to obtain the highest concentration of alkaloids. The combination of these techniques confirmed the presence of the alkaloids and enabled the development of a modern method for the fractionation and isolation of the compounds with strong anti-AChE activity.
Alkaloids of the Lycopodiaceae family are of great interest to researchers due to their numerous properties and wide applications in medicine. They play a very important role mainly due to their potent antioxidant, antidepressant effects and a reversible ability to inhibit acetylcholinesterase (AChE) enzyme activity. This property is of immense importance due to the growing problem of an increasing number of patients with neurodegenerative diseases in developed countries and a lack of effective and efficient treatment for them. Numerous studies have shown that Lycopodiaceae alkaloids are a rich source of AChE inhibitors. In the obtaining of new therapeutic phytochemicals from plant material, the extraction process and its efficiency is crucial. Therefore, the aim of this work was to optimize the conditions of modern PLE to obtain bioactive alkaloids from two Lycopodium species: L. clavatum L. and L. annotinum L. Five different solvents of different polarity were used for prepared plant extracts in order to compare the alkaloid content in and thereby effectiveness of the entire extraction. PLE parameters were used based on multiple studies conducted that gave the highest alkaloids recovery. Crude extracts were purified using solid-phase extraction (SPE) on Oasis HLB cartridge and examined by HPLC/ESI-QTOF–MS of the highly abundant alkaloids. To the best of our knowledge, this is the first time such high recoveries have been obtained for known Lycopodiaceae alkaloids. The best extraction results of alkaloid-lycopodine were detected in the dichloromethane extract from L. clavatum, where the yield exceeded 45%. The high recovery of annotinine above 40% presented in L. annotinum was noticed in dichloromethane and ethyl acetate extracts. Moreover, chromatograms were obtained with all isolated alkaloids and the best separation and quality of the bands in methanolic extracts. Interestingly, no alkaloid amounts were detected in cyclohexane extracts belonging to the non-polar solvent. These results could be helpful for understanding and optimizing the best conditions for isolating potent AChE inhibitors.
In view of the abundant evidence that Lycopodiaceae alkaloids, including the well-known huperzine A (HupA), are among the potent acetylcholinesterase (AChE) inhibitors, an attempt was made to search for new compounds responsible for this property. For this purpose, three plant species belonging to the Lycopodiaceae family, commonly found in the Euro-Asia region, were subjected to the isolation of bioactive compounds, their identification and subsequent evaluation of their anticholinesterase and cytotoxic activities. Methanolic extracts of two Lycopodium and one Hupezia species were obtained via optimized pressurized liquid extraction (PLE) and then pre-purified using innovative gradient vacuum liquid chromatography (gVLC). For the first time, three sorbents of different porosity packed in polypropylene cartridges and mobile phase systems of different polarity were used to elute the target compounds. This technique proved to be a rapid tool for the obtainment of alkaloid fractions and allowed one to select the appropriate process conditions to yield potent AChE inhibitors in each of the species studied. More than 100 collected fractions were analyzed via HPLC/ESI-QTOF-MS, which enabled one to detect more than 50 compounds, including several new ones previously unreported. Some of them were present in high purity fractions (60–90% of the established purity). TLC bioautography assays proved that the analyzed species are rich sources of AChE inhibitors, but H. selago showed the highest anti-AChE activity. Additionally, the modified silanized silica gel sorbent used allowed one to isolate L. clavatum alkaloids more efficiently using an aqueous reversed-phase solvent system. Furthermore, the tested extracts from the three plant extracts were found to be safe, as they did not exhibit cytotoxicity to skin fibroblasts.
Alkaloids obtained from plants belonging to the Amaryllidaceae and Lycopodiaceae families are of great interest due to their numerous properties. They play a very important role mainly due to their strong antioxidant, anxiolytic and anticholinesterase activities. The bioactive compounds obtained from these two families, especially galanthamine and huperzine A, have found application in the treatment of the common and incurable dementia-like Alzheimer’s disease. Thanks to this discovery, there has been a breakthrough in its treatment by significantly improving the patient’s quality of life and slowing down disease symptoms – albeit with no chance of a complete cure. Therefore, a continuous search for new compounds with potent anti-AChE activity is needed in modern medicine. In obtaining new therapeutic bioactive phytochemicals from plant material, the isolation process and its efficiency are crucial. Many techniques are known for isolating bioactive compounds and determining their amounts in complex samples. The most commonly utilized methods are extraction using different variants of organic solvents allied with chromatographic and spectrometric techniques. Optimization of these methods and modification of their procedures potentially allows researchers to obtain the expected results. The aim of this paper is to present known techniques for the isolation of alkaloids, especially from three species Narcissus, Lycopodium and Huperzia that are a rich source of AChE inhibitors. In addition, innovative combinations of chromatographic and spectrometric methods and novel TLC-bioautography will be presented to enable researchers to better study the bioactivity of alkaloids.
The study aimed to evaluate the safety and pharmacological activity Amaryllidaceae, Lycopodiaceae alkaloids and coumarins obtained from Narcissus triandrus L., Lycopodium clavatum L., Lycopodium annotinum L., Huperzia selago L. and Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. In the in vivo studies. The influence of the tested compounds on the central nervous system of rats was assessed in behavioral tests (locomotor activity, Y-maze, passive avoidance). In order to investigate the mechanisms of action, biochemical determinations were performed (AChE activity, BChE activity, IL-1β, IL-6 concentration). In order to assess safety, the concentrations of AST, ALT, GGT and urea and creatinine were determined. The results of the conducted studies indicate a high safety profile of the tested compounds. Behavioral tests showed that they significantly improved rodent memory in a passive avoidance test. The results of biochemical studies showed that by reducing the activity of AChE and BChE and lowering the concentration of IL-1β and IL-6, the coumarin-rich Angelica dahurica extract shows the most promising potential for future therapeutic AD strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.