This paper reports the synthesis and characterization of novel monoferrocenylsumanenes obtained by means of the Sonogashira cross-coupling or click chemistry reaction as well as their application in cesium cation electrochemical sensors. A new synthetic protocol based on Sonogashira cross-coupling was developed for the synthesis of monoferrocenylsumanene or ethynylsumanene. The click chemistry reaction was introduced to the sumanene chemistry through the synthesis of 1,2,3-triazole containing monoferrocenylsumanene. The designed synthetic methods for the modification of sumanene at the aromatic position proved to be efficient and proceeded under mild conditions. The synthesized sumanene derivatives were characterized by detailed spectroscopic analyses of the synthesized sumanene derivatives. The supramolecular interactions between cesium cations and the synthesized monoferrocenylsumanenes were spectroscopically and electrochemically investigated. Furthermore, the design of the highly selective and sensitive cesium cation fluorescence and electrochemical sensors comprising the synthesized monoferrocenylsumanenes as receptor compounds was analyzed. The tested cesium cation electrochemical sensors showed excellent limit of detection values in the range of 6.0−9.0 nM. In addition, the interactions between the synthesized monoferrocenylsumanenes and cesium cations were highly selective, which was confirmed by emission spectroscopy, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and cyclic voltammetry.
Tetraspanins, including CD9, CD63, and CD81, are transmembrane biomarkers that play a crucial role in regulating cancer cell proliferation, invasion, and metastasis, as well as plasma membrane dynamics and protein trafficking. In this study, we developed simple, fast, and sensitive immunosensors to determine the concentration of extracellular vesicles (EVs) isolated from human lung cancer cells using tetraspanins as biomarkers. We employed surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) as detectors. The monoclonal antibodies targeting CD9, CD63, and CD81 were oriented vertically in the receptor layer using either a protein A sensor chip (SPR) or a cysteamine layer that modified the gold crystal (QCM-D) without the use of amplifiers. The SPR studies demonstrated that the interaction of EVs with antibodies could be described by the two-state reaction model. Furthermore, the EVs' affinity to monoclonal antibodies against tetraspanins decreased in the following order: CD9, CD63, and CD81, as confirmed by the QCM-D studies. The results indicated that the developed immunosensors were characterized by high stability, a wide analytical range from 6.1 × 10 4 particles•mL −1 to 6.1 × 10 7 particles•mL −1 , and a low detection limit (0.6−1.8) × 10 4 particles•mL −1 . A very good agreement between the results obtained using the SPR and QCM-D detectors and nanoparticle tracking analysis demonstrated that the developed immunosensors could be successfully applied to clinical samples.
Despite significant progress in cancer therapy, cancer is still the second cause of mortality in the world. The necessity to make quick therapeutic decisions forces the development of procedures allowing to obtain a reliable result in a quick and unambiguous manner. Currently, detecting predictive mutations, including BRCA1, is the basis for effectively treating advanced breast cancer. Here, we present new insight on gene mutation detection. We propose a cheap BRCA1 mutation detection tests based on the surface plasmon resonance (SPR) or quartz crystal microbalance with energy dissipation (QCM-D) response changes recorded during a hybridization process of an oligonucleotide molecular probe with DNA fragments, with and without the BRCA1 mutation. The changes in the morphology of the formed DNA layer caused by the presence of the mutation were confirmed by atomic force microscopy. The unique property of the developed SPR and QCM tests is really short time of analysis: ca. 6 min for SPR and ca. 25 min for QCM. The proposed tests have been verified on 22 different DNA extracted from blood leukocytes collected from cancer patients: 17 samples from patients with various BRCA1 gene mutation variants including deletion, insertion and missense single-nucleotide and 5 samples from patients without any BRCA1 mutation. Our test is a response to the need of medical diagnostics for a quick, unambiguous test to identify mutations of the BRCA1 gene, including missense single-nucleotide (SNPs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.