The aim of the present study was to evaluate the frequency and type of oncogenic v-raf murine sarcoma viral oncogene homolog B1 (BRAF)/neuroblastoma RAS viral (v-ras) oncogene homolog (NRAS) mutations in cutaneous melanoma with clinically detected nodal metastases (stage IIIB and C) in relation to clinicopathological features and outcome. The clinicopathological data of 250 patients following therapeutic lymphadenectomy (LND) between 1995 and 2010, as well as BRAF/NRAS mutational status in corresponding nodal metastases, were analyzed. The median follow-up time was 53 months. BRAF mutations were detected in 154 (62%) cases (141 p.V600E, nine p.V600K and four others) and mutually exclusive NRAS mutations were detected in 42 (17%) cases. The presence of a BRAF mutation was found to correlate with patients of a younger age. The five-year overall survival (OS) rate was 33 and 43% for LND and primary tumor excision, respectively, and the five-year disease-free survival (DFS) rate for LND was 25%. No correlation was identified between BRAF/NRAS mutational status and RFS or OS (calculated from the date of the LND and primary tumor excision); for BRAF- and NRAS-mutated melanoma, the prognosis was the same for patients with wild-type (WT) melanoma. The important factors which had a negative impact on OS and DFS were as follows: Male gender, >1 metastatic lymph node and extracapsular extension of nodal metastases. The interval between the diagnosis of the initial melanoma to regional nodal metastasis (median, 10 months) was not significantly different between BRAF-mutant and -WT patients. Our largest comprehensive molecular analysis of clinical stage III melanoma revealed that BRAF and NRAS mutational status is not a prognostic marker in stage III melanoma patients with macroscopic nodal involvement, but may have implications for potential adjuvant therapy.
Objective: We assessed the status of the BRAF V600E mutation in cell-free circulating tumor DNA (cfDNA) isolated from the plasma of patients with metastatic melanoma treated with the BRAF inhibitor vemurafenib, collected at different time points during therapy to evaluate the sensitivity and specificity of quantitative polymerase chain reaction and droplet digital polymerase chain reaction (ddPCR) and the correlation between the level of plasma cfDNA p.V600E and the long-term clinical outcome. Methods: cfDNA in patients with BRAF-mutated melanoma ( n = 62) was analyzed at baseline and at 4−8 weeks from the start of vemurafenib therapy. BRAF mutations were assessed using tumor tissue-derived DNA and circulating cfDNA from plasma samples. Quantification of BRAF V600E was performed in cfDNA using ddPCR. Results: cfDNA V600E was detected in the plasma of 48/62 (77%) patients at baseline and in 18/62 (29%) patients after 4–8 weeks of treatment. Patients positive for BRAF mutations in cfDNA at baseline had shorter progression-free survival (PFS) and overall survival (OS) compared with patients with undetectable cfDNA BRAF mutations. Undetectable cfDNA p.V600E at baseline and after 4–8 weeks of therapy was associated with the best prognosis. When treated as a continuous variable, the log-transformed concentration of baseline cfDNA p.V600E was significantly associated with both PFS and OS. This effect was retained in the multivariate OS Cox model adjusted for Eastern Cooperative Oncology Group performance status, the presence of brain metastases, patient age, and previous systemic treatment. Conclusions: Monitoring of plasma BRAF p.V600E cfDNA concentrations in patients with metastatic melanoma on targeted therapy may have prognostic value. Undetectable cfDNA p.V600E before and during treatment was associated with a favorable prognosis.
Long non-coding RNAs (lncRNA) are dysregulated in many cancer types. Abnormal baseline levels of these lncRNAs display diagnostic and prognostic potential in cancer patients. The aim of this study was to evaluate the prognostic value of plasma lncRNAs in BRAF -mutant advanced melanoma patients treated with a BRAF inhibitor. Total RNA was isolated from plasma samples collected from 58 advanced BRAF-mutant melanoma patients and 15 healthy donors. The expression levels of 90 lncRNAs were estimated using the LncProfiler qPCR Array Kit (SBI) and LightCycler 96 (Roche). LncRNA expression levels correlated with responses to the BRAF inhibitor (vemurafenib) treatment. The patients were stratified into three groups based on their lncRNA levels with various lncRNA expressions (low, medium, and high). A Cox proportional hazards regression model was used to determine the lncRNAs that were significantly associated with both progression-free and overall survivals (PFS and OS, respectively) in patients receiving vemurafenib. The expression level of 12 lncRNAs was down-regulated, while five lncRNAs were up-regulated in melanoma patients compared to healthy donors. Kaplan-Meier analysis showed that upregulation or downregulation of 11 and 16 different lncRNAs were associated with longer median PFS and OS, respectively. Further analysis demonstrated that the baseline lncRNAs for IGF2AS, anti-Peg11, MEG3, Zeb2NAT are independent prognostic factors in BRAF -mutant advanced melanoma patients treated with vemurafenib. Evaluation of plasma lncRNAs expression level for advanced melanoma diagnosis and prognosis evaluation appears to be a safe and valuable method; however, this method requires further validation in larger cohorts and randomized trials.
BackgroundMelanoma of unknown primary site (MUP) is not a completely understood entity with nodal metastases as the most common first clinical manifestation. The aim of this multicentric study was to assess frequency and type of oncogenic BRAF/NRAS/KIT mutations in MUP with clinically detected nodal metastases in relation to clinicopathologic features and outcome. Materials and MethodsWe analyzed series of 103 MUP patients (period: 1992–2010) after therapeutic lymphadenectomy (LND): 40 axillary, 47 groin, 16 cervical, none treated with BRAF inhibitors. We performed molecular characterization of BRAF/NRAS/KIT mutational status in nodal metastases using direct sequencing of respective coding sequences. Median follow-up time was 53 months. ResultsBRAF mutations were detected in 55 cases (53 %) (51 V600E, 93 %; 4 others, 7 %), and mutually exclusive NRAS mutations were found in 14 cases (14 %) (7 p.Q61R, 4 p.Q61K, 2 p.Q61H, 1 p.Q13R). We have not detected any mutations in KIT. The 5-year overall survival (OS) was 34 %; median was 24 months. We have not found significant correlation between mutational status (BRAF/NRAS) and OS; however, for BRAF or NRAS mutated melanomas we observed significantly shorter disease-free survival (DFS) when compared with wild-type melanoma patients (p = .04; 5-year DFS, 18 vs 19 vs 31 %, respectively). The most important factor influencing OS was number of metastatic lymph nodes >1 (p = .03).ConclusionsOur large study on molecular characterization of MUP with nodal metastases showed that MUPs had molecular features similar to sporadic non-chronic-sun-damaged melanomas. BRAF/NRAS mutational status had negative impact on DFS in this group of patients. These observations might have potential implication for molecular-targeted therapy in MUPs.
Assessment of BRAF mutation status is mandatory in advanced, treatment-naïve melanoma patients. Liquid biopsy can be an alternative in cases with inadequate or unavailable tumor tissue. The aim of our study was to evaluate the clinical utility of plasma circulating tumor DNA analysis for BRAF mutation testing and to assess outcomes of therapy with BRAF/MEK inhibitors initiated based on the liquid biopsy results. This was a retrospective single-center analysis of 46 patients (21 female, 25 male) with advanced melanoma who underwent circulating tumor DNA (ctDNA) BRAF mutation testing. A BRAF mutation was found in 45.7% (21/46) of liquid biopsies and 44.8% (13/29) of tissue samples. In patients with both ctDNA and tissue samples (n = 29), the concordance between the results of both tests was 82.8%. A BRAF mutation was detected in 7/17 (41.2%) patients with only ctDNA analysis. In 18 patients, therapy with BRAF/MEK inhibitors was initiated on the basis of the result of liquid biopsy. The objective response rate was 77.8 %, and the median PFS was 6.0 months. Our study confirms the clinical utility of BRAF mutation detection in plasma ctDNA. This study provides initial real-world data showing that treatment with BRAF/MEK inhibitors could be commenced based on liquid biopsy results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.