Organic photovoltaics (OPVs) promise cheap and flexible solar energy. Whereas light generates free charges in silicon photovoltaics, excitons are normally formed in organic semiconductors due to their low dielectric constants, and require molecular heterojunctions to split into charges. Recent record efficiency OPVs utilise the small molecule, Y6, and its analogues, which – unlike previous organic semiconductors – have low band-gaps and high dielectric constants. We show that, in Y6 films, these factors lead to intrinsic free charge generation without a heterojunction. Intensity-dependent spectroscopy reveals that 60–90% of excitons form free charges at AM1.5 light intensity. Bimolecular recombination, and hole traps constrain single component Y6 photovoltaics to low efficiencies, but recombination is reduced by small quantities of donor. Quantum-chemical calculations reveal strong coupling between exciton and CT states, and an intermolecular polarisation pattern that drives exciton dissociation. Our results challenge how current OPVs operate, and renew the possibility of efficient single-component OPVs.
as printing fabrication, light weight, flexibility, low toxicity, and short energy payback time. The fused-ring electron acceptors (FREAs) pioneered by the Zhan group have broken through the bottleneck of fullerene acceptors, [1][2][3] and OSCs have achieved revolutionary breakthrough recently. [1][2][3][4][5][6] To date, power conversion efficiencies (PCEs) of FREA-based OSCs have reached 18-19%. [7][8][9][10] Among the diverse FREAs, Y6 (chemical structure shown in Figure S1, Supporting Information) and its derivatives have been widely studied recently due to their high photovoltaic performance. [11][12][13][14] Since most organic semiconductors have low dielectric constants (ε ≈ 3-4), [15] Frenkel excitons with high binding energies (E B ) rather than free charges are generated intrinsically upon photoexcitation. Donor (D)/acceptor (A) interfaces that can provide a driving force for exciton dissociation are essential. [16,17] According to the general consensus developed in fullerene-based OSCs, a bulk heterojunction (BHJ) with D/A phase separation size of around 10-20 nm was the optimal morphology for efficient exciton dissociation and charge transport. [18] Accordingly, most high-efficiency optimized OSCs have In contrast to classical bulk heterojunction (BHJ) in organic solar cells (OSCs), the quasi-homojunction (QHJ) with extremely low donor content (≤10 wt.%) is unusual and generally yields much lower device efficiency.Here, representative polymer donors and nonfullerene acceptors are selected to fabricate QHJ OSCs, and a complete picture for the operation mechanisms of high-efficiency QHJ devices is illustrated. PTB7-Th:Y6 QHJ devices at donor:acceptor (D:A) ratios of 1:8 or 1:20 can achieve 95% or 64% of the efficiency obtained from its BHJ counterpart at the optimal D:A ratio of 1:1.2, respectively, whereas QHJ devices with other donors or acceptors suffer from rapid roll-off of efficiency when the donors are diluted. Through device physics and photophysics analyses, it is observed that a large portion of free charges can be intrinsically generated in the neat Y6 domains rather than at the D/A interface. Y6 also serves as an ambipolar transport channel, so that hole transport as also mainly through Y6 phase. The key role of PTB7-Th is primarily to reduce charge recombination, likely assisted by enhancing quadrupolar fields within Y6 itself, rather than the previously thought principal roles of light absorption, exciton splitting, and hole transport.
The natural black–brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV–visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.