In this article, thin solid films are processed via pulsed-pressure metal organic chemical vapour deposition (PP-MOCVD) on FTO substrates over a range of processing times to produce a range of thicknesses and microstructures. The films are highly nanostructured anatase-rutile TiO2 composite films with unique single crystal dendrites. After annealing, carbon was removed, and materials showed improved water splitting activity; with IPCEs above 80 % in the UV, photocurrents of ~1.2 mA.cm-2 at 1.23 VRHE at 1 sun irradiance and an extension of photoactivity into the visible range. The annealed material exhibits minimal recombination losses and IPCEs amongst the highest reported in the literature; attributed to the formation of a high surface area nanostructured material and synergetic interactions between the anatase and rutile phases.
TiO2 photocatalyst is of interest for antimicrobial coatings on hospital touch-surfaces. Recent research has focused on visible spectrum enhancement of photocatalytic activity. Here, we report TiO2 with a high degree of nanostructure, deposited on stainless steel as a solid layer more than 10 μm thick by pulsed-pressure-MOCVD. The TiO2 coating exhibits a rarely-reported microstructure comprising anatase and rutile in a composite with amorphous carbon. Columnar anatase single crystals are segmented into 15–20 nm thick plates, resulting in a mille-feuilles nanostructure. Polycrystalline rutile columns exhibit dendrite generation resembling pine tree strobili. We propose that high growth rate and co-deposition of carbon contribute to formation of the unique nanostructures. High vapor flux produces step-edge instabilities in the TiO2, and solid carbon preferentially co-deposits on certain high energy facets. The equivalent effective surface area of the nanostructured coating is estimated to be 100 times higher than standard TiO2 coatings and powders. The coatings prepared on stainless steel showed greater than 3-log reduction in viable E coli after 4 hours visible light exposure. The pp-MOCVD approach could represent an up-scalable manufacturing route for supported catalysts of functional nanostructured materials without having to make nanoparticles.
Niobium doped TiO2 thin films were deposited on silica coated glass substrate using aerosol assisted chemical vapour deposition (AACVD) from hexane solution, at 500 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.