Due to the inability of conventional wastewater treatment procedures to remove organic pharmaceutical pollutants, active pharmaceutical components remain in wastewater and even reach tap water. In terms of pharmaceutical pollutants, the scientific community focuses on β-blockers due to their extensive (over)usage and moderately high solubility. In this study, the photocatalytic activity of V2O5 was investigated through the degradation of nadolol (NAD), pindolol (PIN), metoprolol (MET), and their mixture under ultraviolet (UV) irradiation in water. For the preparation of V2O5, facile hydrothermal synthesis was used. The structural, morphological, and surface properties and purity of synthesized V2O5 powder were investigated by scanning electron microscopy (SEM), X-ray, and Raman spectroscopy. SEM micrographs showed hexagonal-shaped platelets with well-defined morphology of materials with diameters in the range of 10–65 µm and thickness of around a few microns. X-ray diffraction identified only one crystalline phase in the sample. The Raman scattering measurements taken on the catalyst confirmed the result of XRPD. Degradation kinetics were monitored by ultra-fast liquid chromatography with diode array detection. The results showed that in individual solutions, photocatalytic degradation of MET and NAD was relatively insignificant (<10%). However, in the PIN case, the degradation was significant (64%). In the mixture, the photodegradation efficiency of MET and NAD slightly increased (15% and 13%). Conversely, it reduced the PIN to the still satisfactory value of 40%. Computational analysis based on molecular and periodic density functional theory calculations was used to complement our experimental findings. Calculations of the average local ionization energy indicate that the PIN is the most reactive of all three considered molecules in terms of removing an electron from it.
Water pollution is a significant issue nowadays. Among the many different technologies for water purification, photocatalysis is a very promising and environment-friendly approach. In this study, the photocatalytic activity of Sr0.9La0.1TiO3 (SLTO) and Sr0.25Ca0.25Na0.25Pr0.25TiO3 (SCNPTO) nano-sized powders were evaluated by degradation of pindolol in water. Pindolol is almost entirely insoluble in water due to its lipophilic properties. The synthesis of the SCNPTO was performed using the reverse co-precipitation method using nitrate precursors, whereas the SLTO was produced by spray pyrolysis (CerPoTech, Trondheim Norway). The phase purity of the synthesized powders was validated by XRD, while HR-SEM revealed particle sizes between 50 and 70 nm. The obtained SLTO and SCNPTO powders were agglomerated but had relatively similar specific surface areas of about 27.6 m2 g−1 and 34.0 m2 g−1, respectively. The energy band gaps of the SCNPTO and SLTO were calculated (DFT) to be about 2.69 eV and 3.05 eV, respectively. The photocatalytic performances of the materials were examined by removing the pindolol from the polluted water under simulated solar irradiation (SSI), UV-LED irradiation, and UV irradiation. Ultra-fast liquid chromatography was used to monitor the kinetics of the pindolol degradation with diode array detection (UFLC–DAD). The SLTO removed 68%, 94%, and 100% of the pindolol after 240 min under SSI, UV-LED, and UV irradiation, respectively. A similar but slightly lower photocatalytic activity was obtained with the SCNPTO under identical conditions, resulting in 65%, 84%, and 93% degradation of the pindolol, respectively. Chemical oxygen demand measurements showed high mineralization of the investigated mixtures under UV-LED and UV irradiation.
The photocatalytic performance of Sr0.9La0.1TiO3 and Sr0.25Ca0.25Na0.25Pr0.25TiO3 perovskite–based catalysts were studied under different radiation types (simulated solar, LED, and UV radiation) for removal of metoprolol and pindolol. The results showed that both materials effectively removed metoprolol and pindolol, with the highest degradation efficiency observed under UV radiation. The degradation efficiency of metoprolol went up to 30% using Sr0.9La0.1TiO3 and Sr0.25Ca0.25Na0.25Pr0.25TiO3 using all mentioned radiation types. Pindolol was degraded more efficiently, using Sr0.9La0.1TiO3 68%, 94%, and 100% of pindolol was degraded after 240 min, under SSI, UV-LED, and UV irradiation. Using Sr0.25Ca0.25Na0.25Pr0.25TiO3, degradation efficiency was 65%, 84%, and 93%, under SSI, UV-LED, and UV irradiation, respectively. The chemical oxygen demand showed that these materials were highly efficient in mineralizing metoprolol and pindolol as well as their intermediates. The mechanisms behind the degradation of metoprolol using perovskite catalysts are complex. Still, ongoing research has indicated that the degradation mechanism occurs through hydroxylation of the aromatic ring or side chains. A similar degradation pathway is suggested for the degradation of pindolol, including opening an indol ring at the nitrogen atom site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.