We report the results of experimental work focusing on host-guest supramolecular complex creation between macrocyclic compound (β-cyclodextrin) and 1-acenaphthenol enantiomers (racemic mixture) in liquid phase composed of 35% acetonitrile in water (v/v) at different temperatures ranging from 0 to 90 °C. Experimental setup involved several analytical protocols based on classical non-forced flow planar chromatography (RP-18 TLC plates), micro-TLC (RP-18 W HPTLC plates), column chromatography (HPLC with C-18 and C-30 stationary phases), as well as UV-Vis spectrophotometry and optical microscopy. It has been found that under various planar chromatographic conditions (stationary plates type, chamber shape and volume, development mode, and saturation) non-typical retention properties (extremely high retention) of 1-acenaphthenol at subambient temperatures can be observed. To our knowledge, reported experimental results are in opposition to currently described retention models based on column chromatographic investigation of host-guest complexes (where in case of strong interaction of given analyte with macrocyclic mobile phases additive, which itself is non strongly retarded by stationary phase—close to the retention of dead volume marker, the retention of target compounds is shortened at low temperatures). To explain this TLC phenomenon that may have in our opinion a number of practical applications, especially for selective high throughput separation involving microchromatographic and/or microfluidic devices as well fractionation and extraction protocols (using, e.g., bar extraction systems), several experiments were conducted focusing on (i) acenaphthenol chromatography under different instrumental conditions, (ii) cyclodextrin retention measured as analyte or mobile phase additive, (iii) plate development time under different mobile phases and temperature settings, (iv) various column chromatographic conditions including C-30 and two C-18 stationary phases, (v) UV-Vis spectrophotometry, and (vi) microscopy inspection of precipitated CD-acenaphthenol crystals. Analysis of collected data has revealed that the most probable reasons for TLC retention behavior of 1-acenaphthenol under β-cyclodextrin additive conditions can be associated with (i) solubility changes of created host-guest complex, (ii) kinetics of solid complex precipitation, and (iii) differences in analysis time between planar and column chromatography. Because precipitation phenomenon may have a massive impact on analytes quantification involving macrocycles as the mobile phase additives, our previously reported data concerning a number of low-molecular compounds (mainly steroids and non steroidal endocrine disrupting chemicals) using HPLC methodology based on binary mobile phases without and with β-cyclodextrin and its hydroxypropyl derivative were re-examined and results discussed. Considering these data and the whole data set reported presently, the enhanced model of chromatographic retention driven by host-guest interaction was proposed.Electronic s...
The main goal of this review is to summarize practical approaches concerning the application of microfluidic systems for the analysis of various biomarkers and pollutants, as well as microbes, in water and wastewater matrixes. This problem involves multidisciplinary expertise combining research knowledge from various areas, including wet chemistry, biochemistry, physical chemistry, molecular biology, genetics, signal processing, microelectronics material science, and separation science. It has been documented that fairly primitive but fast and inexpensive screening methods involving paper-based analytical devices (PADs) and micro total analytical systems (μTAS) can be considered as serious alternatives to their more advanced counterparts such as GC, HPLC, and capillary electrophoresis coupled to various sophisticated detectors (e.g., multiwavelength spectrophotometers such as UV-Vis/DAD and mass spectrometers). The main advantage of PAD- and μTAS-driven technology is that such sensing devices may work under on-site and real-time conditions and measure a number of physical parameters and chemical factors simultaneously. Moreover, hybrid miniaturized analytical systems may combine sensing and data acquisition modules with common mobile phones and electronic devices working with global positioning systems and communicating through the Internet.
Residues of daily usage products, including pharmaceuticals and personal care products (PPCPs) as well as pure organic compounds, particularly endocrine-disrupting chemicals (EDCs), can migrate to surface water ecosystems from point sources, e.g. wastewater treatment plants. Although the majority of these substances are present in water at very low concentrations, they started to be considered "new" hazardous environmental pollutants. Their presence in water became an important problem in the late twentieth century, when the production of organic chemicals increased. Certain low-molecular weight organic substances present in water ecosystems at low concentrations are likely to have adverse effects on animals and humans. Even short-term exposures of aquatic organisms to EDCs, especially at early developmental stages, can induce a variety of negative physiological effects. Even though direct negative effects caused by exposure have not been demonstrated, active substances of numerous drugs can accumulate in the tissues and reach higher trophic levels. Modern high-throughput separation and detection techniques, including gas/liquid chromatography coupled with mass spectrometry detectors (GC/LC-MS), allow detecting and quantifying trace amounts of micro-pollutants acting as EDCs in complex biosamples and technological processes, particularly during wastewater treatment. Moreover, limits of detection for many organic micro-pollutants have been determined. New measures to remove pharmaceuticals from sewage should be designed, as many treatment plants are not prepared to effectively eliminate such pollutants. The aim of the present study was to review the literature data regarding the presence of pharmaceuticals, PPCPs and EDCs in the environment (particularly aquatic) and to present the methods of sample determinations and sewage treatment. Additionally, low efficiency of traditional wastewater treatment processes was discussed.
The aim of this research is to demonstrate the concept and ability for the fast and preliminary screening of complex food and environmental samples for the presence of endocrine disrupters fractions, consisting of low-molecular mass micropollutants, particularly various bisphenols (A, B, C, E, F, S, Z, AF, AP, BP and FL). The developed analytical protocol for this research requires two main steps: (i) optimized solid phase extraction (SPE) for selective isolation, purification and pre-concentration of target fraction, and (ii) selective temperature-dependent inclusion chromatography for samples analysis via a HPLC-UV-VisDAD system using isocratic elution and internal standard quantification approach. The chromatographic experiment revealed that both β-CD and its hydroxypropyl derivative strongly interact with selected bisphenols. This is in contrast to the steroids and PAHs molecules investigated previously, where a strong interaction with β-cyclodextrin was observed. Integrated areas derived from acquired chromatographic profiles for each individual sample were used as the simple classification variable enabling samples comparison. We demonstrated that the proposed analytical protocol allows for fast estimation of EDC fractions in various daily use products, food and environmental samples. The materials of interest were selected due to the presence in surface water ecosystems of their residues, and finally, in raw wastewater including rice bags, plastic bags, cloths, sanitary towels, fish baits and various plastic foils from food products. Treated sewage water released directly to the environment from a municipal treatment plant (Jamno, Koszalin) was also investigated. It has been demonstrated that a whole range of low-molecular mass compounds, which may be detected using UV-Vis detector, can easily be emitted from various in daily use products. The presence of micropollutants in treated wastewater, water ecosystems and plastic waste utilization via technological wastewater treatment processes must be addressed, especially in terms of microplastic-based pollutants acting as endocrine disrupters. It is hoped that the proposed simple analytical protocol will be useful for fast sample classification or selection prior to advanced targeted analysis involving the more accurate quantification of specific analytes using e.g., mass spectrometry detectors.
Background: This research reports a multivariate experiment enabling observation of the potential application of macrocyclic compound [β-cyclodextrin (β-CD)] and/or duckweed organisms as the active factors for elimination of selected bisphenols A, B, and S from water samples. Objective: Target bisphenols selection was based on observation that such components can be present in food or environmental samples (e.g., vegetable/fruit juices, milk, drinking water, or treated wastewater). Methods: Biological research was carried out using aquatic organisms containing chlorophyll, particularly duckweed (Lemna minor L), that may work as an active biomass for the elimination or extraction of bisphenols micropollutants from water. Using such a system, we studied the potential encapsulation effect and removal efficiency of nontoxic macrocyclic oligosaccharide (β-cyclodextrin) acting as an encapsulation reagent to promote the removal of selected bisphenols from liquid phase both with and without the presence of duckweed biomass. Results: Experimental data have revealed that β-CD or combined β-CD/duckweed system has an effect on bisphenols elimination from water. The initial data set obtained from this preliminary experiment (and combined with supramolecular complex formation data calculated from chromatographic experiments, published previously) enables designing of further experiments focusing on the development of green chemistry technology. Conclusions: It is hoped that this may be used for the efficient removal of low-molecular-mass micropollutants using classical technological wastewater treatment processes modified by biomass and macrocyclic additives. This process needs to be optimized, but the results presented have revealed that such green chemistry technology, if successful, may be an interesting alternative for the selective removal of the micropollutants investigated from wastewater using classical adsorbents (e.g., carbons and carbon-related nanomaterials), particularly in terms of the worldwide problem with microplastic pollutants in the environment and food products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.