Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi. We used an AlphaLISA assay to measure the levels of proinflammatory mediators IL-8 and ICAM-1 in hTNF-α-stimulated HLMVECs. Aer-865 showed significant reduction of both: with EC50 values of (3.5±1.5) μg mL(-1) ((4.0±1.7) μM) and (50.0±13.4) μg mL(-1) ((57.8±15.5) μM), respectively. Confocal laser scanning microscopy revealed that the anti-inflammatory effect of Aer-865 was directly associated with inhibition of NF-κB translocation to the nucleus. Moreover, Aer-865 did not show any cytotoxic effect.
Cyanobacteria produce many biologically active metabolites synthesized via nonribosomal synthetic pathways such as cyclic microcystins (MCs) and linear aeruginosins (Aers). The present study aimed to investigate the effects of different MC variants and the newly isolated aerugenosin Aer-865 on macrophages, which represent one of the key effector cells within the innate immune responses. Specifically, our study included RAW 264.7 macrophage activation associated with production of cytotoxic and cytostatic nitric oxide (NO) as well as pro-inflammatory mediators like tumor necrosis factor α (TNFα) and interleukin 6 (IL-6). From the compounds investigated, commonly occurring MC variants (-RR, -YR) and Aer-865 had no significant effects within the non-cytotoxic concentrations tested, i.e. 0.001-1 μM for MCs and 0.1-50 μM for Aer-865. In contrast to known immunoactive MC-LR, the negligible immunomodulatory potential of tested MC congeners could be related to their differences in structure. The knowledge of MC structure-specific activities contributes to the understanding of complex toxicity of different MC variants and most importantly their mixtures. This study is one of the first study that evaluate the effect of larger set of cyanobacterial peptides on macrophages and compare their immunomodulatory potential.
Chronic inflammation is at least partially mediated by the chemokine-mediated attraction and by the adhesion molecule-directed binding of leukocytes to the activated endothelium. Therefore, it is therapeutically important to identify anti-inflammatory compounds able to control the interaction between leukocytes and the endothelial compartments of the micro- and macrocirculation. When testing novel drug candidates, it is, however, of the utmost importance to detect side effects, such as potential cytotoxic and barrier-disruptive activities. Indeed, minor changes in the endothelial monolayer integrity may increase the permeability of small blood vessels and capillaries, which, in extreme cases, can lead to edema development. Here, we describe the development of a high-throughput screening (HTS) platform, based on AlphaLISA technology, able to identify anti-inflammatory nontoxic natural or synthetic compounds capable of reducing tumor necrosis factor (TNF)-induced chemokine (interleukin [IL]-8) and adhesion molecule (ICAM-1) expression in human lung microvascular endothelial cells. Quantification of cell membrane-expressed ICAM-1 and of cell culture supernatant-associated levels of IL-8 was analyzed in HTS. In parallel, we monitored monolayer integrity and endothelial cell viability using the electrical cell substrate impedance sensing method. This platform allowed us to identify natural secondary metabolites from cyanobacteria, capable of reducing ICAM-1 and IL-8 levels in TNF-activated human microvascular endothelial cells in the absence of endothelial monolayer barrier disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.