The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.
Rehabilitative training is one of the most successful therapies to promote motor recovery after spinal cord injury, especially when applied early after injury. Polytrauma and management of other medical complications in the acute post-injury setting often preclude or complicate early rehabilitation. Therefore, interventions that reopen a window of opportunity for effective motor training after chronic injury would have significant therapeutic value. Here, we tested whether this could be achieved in rats with chronic (8 weeks) dorsolateral quadrant sections of the cervical spinal cord (C4) by inducing mild neuroinflammation. We found that systemic injection of a low dose of lipopolysaccharide improved the efficacy of rehabilitative training on forelimb function, as assessed using a single pellet reaching and grasping task. This enhanced recovery was found to be dependent on the training intensity, where a high-intensity paradigm induced the biggest improvements. Importantly, in contrast to training alone, the combination of systemic lipopolysaccharide and high-intensity training restored original function (reparative plasticity) rather than enhancing new motor strategies (compensatory plasticity). Accordingly, electrophysiological and tract-tracing studies demonstrated a recovery in the cortical drive to the affected forelimb muscles and a restructuration of the corticospinal innervation of the cervical spinal cord. Thus, we propose that techniques that can elicit mild neuroinflammation may be used to enhance the efficacy of rehabilitative training after chronic spinal cord injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.