The chemical composition and efficiency of biogas production in the methane fermentation process of silages of wild and cultivated varieties of reed canary grass were compared. An attempt was made to answer the question on how the habitat and the way of utilization of plants affect chemical composition and biogas yield. Physicochemical properties such as dry matter, organic dry matter, protein, fat, crude fiber fraction, macro- and microelements content were considered. The anaerobic digestion process and FTIR analysis were also carried out. The results showed that the two varieties differ essentially in their physical and chemical properties. The cultivated variety was characterized by higher biogas yield (406Ndm(3)kg(-1) VS) than the wild one (120Ndm(3)kg(-1) VS). This was probably related to the chemical composition of plants, especially the high content of indigestible crude fiber fractions and ash. These components could reduce biogas quantity and quality.
The article examines the possibility of using residues from greenhouse cucumber and tomato cultivation as biomass for energy and CO 2 production in order to meet greenhouse needs. Methane fermentation and combustion were compared. Moreover, the legitimacy of ensiling as a storage method for biogas plant was evaluated. The tested waste was found to be an unsuitable feedstock for the production of silage due to low sugar and high protein content. Fresh waste had a higher biogas yield than silage; however, its fermentation lasted longer. Furthermore, the results showed that, in the case of fresh residues, the methane fermentation proved to be a more energy-efficient process, while air-dry biomass is a more sustainable feedstock for combustion. The energy and CO 2 balance showed that, regardless of the method used, the available quantity of waste is too small to meet the greenhouse needs.
This study aims at exploiting research outcomes concerning tillage practices in order to make solutions available to farmers to mitigate negative environmental impact to soils. Two alternative practices have been analysed against conventional full tillage based on data provided by a long-term experiment conducted at the Institute of Soil Science and Plant Cultivation (IUNG) farm in Grabów, Central Poland. Reduced Tillage and Direct Sowing are evaluated against Full Tillage on the basis of socio-economic and environmental criteria. Multi-criteria decision analysis undertaken using the PROMETHEE method provided evidence that the ‘optimal’ maize cultivation system depends on the decision maker’s viewpoint and preferences. In fact, criteria selected and related weights elicited from representative farmers, as well as from an expert agronomist, reveal different viewpoints. Direct sowing was the most preferable for the large farm and expert perspective, whereas in case of small farm reduced tillage ranked first. Prospect theory developed by behavioural economists was incorporated to take into account decision biases. As a matter of fact, based on Prospect Theory-PROMETHEE from the small farm and the expert perspective, the conventional system was now ranked first, while for the large farm, the most preferable practice was still direct sowing.
The aim of the study is to assess the possibility of reducing greenhouse gas (GC) emissions in the
cultivation of maize for grain using the method combining carbon footprint (CF) and Data Envelopment
Analysis (DEA). The analysis used survey data from 32 farms. The quantitative assessment of greenhouse
gas emissions with a breakdown into the main emission sources was presented, and then the possibilities
of limiting the level of GHG emission in these farms were determined. The emission reduction potential
for the analyzed farms was specified in the range from 94 to 1,047 kg CO2-eq/ha (from 3.3 to 33.4%).
12Abstract. The aim of the study was to evaluate the impact of conventional till (CT) and no-till (NT) cultivation systems in a long-term experiment with maize on soil water dynamics using continuous soil moisture (SM) measurements in the 2014, 2015, 2016 vegetation seasons. The ability of HERMES model to simulate SM was also evaluated in Polish conditions. The long-term experiment with maize is located in the Grabów Experimental Farm of Institute of Soil Science and Plant Cultivation -State Research Institute in the Masovian Voivodeship -Central Poland (51°21ʹ18ʺN, 21°40ʹ09ʺE). The HERMES model was calibrated by modification of temperature sums in crop parameters file and capacity parameters (field capacity and wilting point) of the experimental site. The results show that NT system has a positive impact on soil water content. However, this improvement is dependent on a year, phenological phase and soil layer. The results showed also that calibrated (until now) model HERMES is able to simulate SM in a wet year. For simulation of SM in a dry year there is still need for future improvement of calibration parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.