This article presents selected flow modeling indices of the Bystra River catchment area (east Poland) obtained using the SWAT model simulations for three regional climate models driven by the EC-EARTH global climate model for 2021–2050 and both RCP4.5 and RCP 8.5 scenarios. The research area was selected due to the large relief of the terrain, the predominance of soils made of loess and the agricultural nature of the Bystra River catchment area, which is very sensitive to climate change, has very valuable soils, and can be used as a test area for modeling land use-based adaptation measures to climate change. The calibration and validation using the SUFI-2 algorithm in the SWAT CUP program was carried out in order to determine the water balance. After obtaining satisfactory results, the SWAT-CUP program simulated the best parameter values for climate change projections. In analyzed climate projections, the monthly mean sums of actual evapotranspiration and potential evapotranspiration will be higher compared to the simulation period of the 2010–2017 model. The exception is the month of June, where actual evapotranspiration in most climate projections is lower compared to the years 2010–2017. The average monthly total runoff for the Bystra River basin will be lower in most of the 2021–2030 climate change projections for most months compared to the reference period. Also, in the 2031–2040 and 2041–2050 periods, the average monthly total runoff will be lower for the RCP 4.5 scenarios (except for one RCP 4.5 scenario in 2031–2040). Additionally, in the case of the RCP 8.5 for the two scenarios in 2041–2050, the average monthly total runoff will be higher compared to the reference years. We determine that the analysis impact of climate change will result in 31 recognized and different small sub-catchments of the Bystra River, which result from higher precipitation and less evapotranspiration for RCP 8.5 in 2041–2050. All of the above changes in the individual components of the water balance may have a negative impact on the vegetation in the coming decades. The temperature increase and the variable amount of precipitation in individual months may lead to an increased number of extreme phenomena. Increased mean monthly sum of actual and potential evapotranspiration, as well as changes in monthly sums of total runoff, may disturb the vegetation in the studied area at every stage of growth. The above components may also influence changes in the amount of water in the soil (especially during the growing season). Counteracting the effects of future climate change requires various adaptation measures.
The article presents predicted changes in soil water content in the Bystra river catchment (eastern Poland) for various scenarios of climate change and adaptation practices obtained on the basis of a SWAT model simulation for three regional climate models driven by the global climate model EC-EARTH for the years 2041–2050 and the RCP 4.5 and 8.5 RCP scenarios. Climate scenarios were put against five adaptation scenarios presenting changes in land use and protective measures compared against a zero scenario of BaU (Business as Usual) kept in the future climate. Adaptation scenarios 1–5 are modifications of Scenario 0 (S-0). The 0–5 scenarios’ analysis was based on comparing soil water content and total runoff, sediment yield, actual evapotranspiration. The first adaptation scenario (AS-1) assumes an increase in afforestation on soils from the agricultural suitability complex of soil 6–8 (semi-dry, permanent dry, semi-wet). The second adaptation scenario (AS-2) assumes the creation of a forested buffer for the Bystra River and its tributaries. The third adaptation scenario (AS-3) shows one of the erosion prevention practices, the so-called filter strips. The fourth adaptation scenario (AS-4) assumes the reduction in plowing on arable land. The fifth adaptation scenario (AS-5) involves increasing soil organic carbon to 2%. Simulations revealed that each of the adaptation scenarios 1, 2, 3, 5 does not generally contribute to increasing the water content in soil on BARL (spring crops), CANP (rape), WWHT (winter crops), CRDY (other crops) on arable lands (which together account for over 50% of the catchment area). However, they can contribute to the reduction in sediment yield, total runoff and changes in actual evapotranspiration. The adaptation scenario 4 (AS-4) shows a slight increase in the soil water content on Bystra catchment in the 2041–2050 perspective. Scenario 4 indicated a slight increase in total runoff and a decrease in sediment yield, which in combination with slightly higher water content reflects the protective role of plant residue mulch, lowering the evaporation from the bare soil surface during warm seasons. The no-till adaptation practice had the highest effect in positively affecting water balance at the catchment scale among the adaptation scenarios considered.
The paper presents the estimated changes in the soil water content, the total runoff, the sediment yield and the actual evapotranspiration for the small Bystra catchment in the east of Poland. The findings are based on the results of three simulations covering the years of 2041–2050. The simulations were based on a calibrated and validated SWAT model (2010–2017). The first variant covers just the climate change and the existing structure of soil cultivation for the three regional climate models supported by the EC-EARTH global climate model in the emission scenarios RCP4.5 and RCP8.5. Variants two and three are based on the first variant in terms of the changing climate. The second variant, however, involves placing a pond in each farm in the catchment, while the third variant involves designing huge reservoirs as a result of land consolidation. Variants two and three occur in five adaptation scenarios each. The first adaptation scenario (V2.1 and V3.1) involves only increasing the number of ponds on the farm or increasing the number of reservoirs for non-irrigated arable land crops, i.e., WWHT (winter cereals), BARL (spring cereals), CANP (rapeseed) and CRDY (other crops). The second adaptation scenario (V2.2 and V3.2) involves growing vegetables without irrigation (instead of cereals). The third adaptation scenario (V2.3 and V3.3) involves growing vegetables with irrigation (instead of cereals). The fourth adaptation scenario (V2.4 and V3.4) involves partial cultivation of vegetables and cereals. The fifth adaptation scenario (V2.5 and V3.5) involves partial cultivation of orchards and cereals. The adaptation scenarios of the irrigation of vegetables from deep water-bearing layers (second variant) or reservoirs (third variant) contribute to the increase in water content in the soil, especially in summer, in comparison with the adaptation scenarios for vegetable cultivation without irrigation. What is more, the actual evapotranspiration was higher in the adaptation scenarios involving irrigation than in scenarios without irrigation. It is known that the changes in water content in soil and the intensification of water erosion are gravely affected by modifications in crops and soil cultivation. A change from cereal cultivation to irrigated vegetable cultivation or orchards increased the water content in the soil in most climatic projections. However, the increase in the number of ponds in the second variant had little impact on the soil water content, actual evapotranspiration and overall runoff, while the erosion loss decreased. With the lower precipitation levels in the years 2041–2050 relative to 2010–2017, as presented in the emissive scenario RCP 4.5, the soil water content decreases by 1–14% for most variants. Total runoff for most variants will also be lower by 4–35%. The percentage change in sediment yield will fluctuate between −86% and 116%. On the other hand, the actual evapotranspiration for most variants will be higher. With higher precipitation levels in the years 2041–2050 relative to 2010–2017, as presented in the emissive scenario RCP 8.5, the soil water content changes slightly from −7% to +3%. Total runoff for most variants will also be higher by as much as 43%. Sediment yield for most scenarios may increase by 226%. The actual evapotranspiration for most variants will also be higher. Irrigation variants tend to increase soil available water while increasing evapotranspiration and total outflow in the catchment as compared to non-irrigated LULC. The largest increase in the soil water content is observed in most irrigation variants for RCP 4.5 (annual average 316–319 mm) (V2.3-V2.5, V3.2, and V3.3) and RCP 8.5 (annual average 326–327 mm) (V2.3-V2.5 and V3.3) as compared to V1 (BaU) (315 mm–RCP 4.5 and 324 mm–RCP 8.5) for the years 2041–2050. On the other hand, the lowest increase in soil water content is observed in the V3.5 variant, with an annual average of 292 mm for RCP 4.5 and an annual average of 311 mm for RCP 8.5. Thus, for future climate change scenarios, irrigation with water reservoirs (ponds and storage reservoirs) should be considered. The study proves the rationale behind building ponds in small catchments in order to increase water resources in a landscape and also to counteract adverse effects of climate changes, i.e., sediment outflow and surface water erosion.
This study aims at the sustainability assessment of maize silage cultivation according to levels of nitrogen fertilization. Based on data provided by a field experiment, economic, production and environmental criteria were evaluated for three levels of nitrogen fertilization: 80, 120 and 160 kg/ha. The environmental impact of maize cultivation was evaluated by the Life Cycle Assessment (LCA) methodology. In a multi-criteria assessment, the weights of sub-criteria were evaluated on the basis of scientists, agricultural advisers and farmers’ responses through AHP methodology. Based on the mean opinion of the respondents, economic criteria have the greatest impact on overall sustainability evaluation (54%), while the impact of environmental criteria (30%) and production criteria (16%) is much smaller. Analysis of economic subcriteria proved to have the greatest impact of gross margin (61%) on sustainability assessment, followed by the economic efficiency index (31%), while the smallest impact (8%) was obtained for the economic independence index. Among the analysed production subcriteria, the level of production and complexity of agrotechnical operations (44% each) had the greatest impact on sustainability assessment, and the least – labour use (12%). The obtained results showed the best economic evaluation for 120 kg N/ha, while from a production and an environmental point of view the best alternative is the application of 80 kg N/ha. The overall evaluation, with estimated criteria weights, shows the best sustainability performance for an 80 kg/ha fertilization dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.