The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.
Depression is associated with social risk factors, social impairments and poor social functioning. This paper gives an overview of these social aspects using the NIMH Research and Domain Criteria 'Systems for Social Processes' as a framework. In particular, it describes the bio-psycho-social interplay regarding impaired affiliation and attachment (social anhedonia, hyper-sensitivity to social rejection, competition avoidance, increased altruistic punishment), impaired social communication (impaired emotion recognition, diminished cooperativeness), impaired social perception (reduced empathy, theory-of-mind deficits) and their impact on social networks and the use of social media. It describes these dysfunctional social processes at the behavioural, neuroanatomical, neurochemical and genetic levels, and with respect to animal models of social stress. We discuss the diagnostic specificity of these social deficit constructs for depression and in relation to depression severity. Since social factors are importantly involved in the pathogenesis and the consequences of depression, such research will likely contribute to better diagnostic assessments and concepts, treatments and preventative strategies both at the diagnostic and transdiagnostic level.
Intention attribution guides the cognitively most demanding forms of social learning, such as imitation, thereby scaffolding cumulative cultural evolution. However, it is not thought to be necessary for more basic forms of social learning. Here we present evidence that in marmoset monkeys (Callithrix jacchus) even most basic forms of social learning such as enhancement depend on intention attribution. Marmosets perceived the behavior of a conspecific and a conspecific-like robot, but not that of a moving black box, as goal directed. Their subsequent choice behavior was shaped by social facilitation and stimulus enhancement, that is, by very simple forms of social learning, but only when exposed to the conspecific and robot, which they previously had perceived as intentional agents. We discuss the implications of this finding for contemporary debates about social learning, including emulation learning and ghost control studies, the necessity of goal-directed copying for cumulative cultural evolution, and the limits of current classification systems of social learning for the evolution of social and asocial learning.
Recent findings in neuroscience suggest an overlap between brain regions involved in the execution of movement and perception of another’s movement. This so-called “action-perception coupling” is supposed to serve our ability to automatically infer the goals and intentions of others by internal simulation of their actions. A consequence of this coupling is motor interference (MI), the effect of movement observation on the trajectory of one’s own movement. Previous studies emphasized that various features of the observed agent determine the degree of MI, but could not clarify how human-like an agent has to be for its movements to elicit MI and, more importantly, what ‘human-like’ means in the context of MI. Thus, we investigated in several experiments how different aspects of appearance and motility of the observed agent influence motor interference (MI). Participants performed arm movements in horizontal and vertical directions while observing videos of a human, a humanoid robot, or an industrial robot arm with either artificial (industrial) or human-like joint configurations. Our results show that, given a human-like joint configuration, MI was elicited by observing arm movements of both humanoid and industrial robots. However, if the joint configuration of the robot did not resemble that of the human arm, MI could longer be demonstrated. Our findings present evidence for the importance of human-like joint configuration rather than other human-like features for perception-action coupling when observing inanimate agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.