Industrial minerals play an important role in the Norwegian mining industry. The presented research focuses on defining marble deposit variability in order to evaluate parameters that can potentially be related to downstream process performance. Two types of marble raw material (K2 and K5) from the Verdalskalk open pit, used for precipitated calcium carbonate production (PCC) were tested for possible differences within texture, grain boundaries shape, grain size, accessory mineral assemblage. Additionally, surface hardness was measured using the Proceq Equotip D device. K5 type was found to be finer-grained compared to K2. The presence of quartz was more pronounced in K2 type material, which possessed higher surface hardness values and presented higher variation of those.
This paper introduces the concept of using a geometallurgical flowsheet as a tool to design, visualize and communicate a geometallurgical program. The development of the concept is carried out using a case study of an industrial mineral mining operation. A modified Integration Definition for Function Modeling (IDEF0) technique is proposed as a methodology to develop the geometallurgical flowsheet. The geometallurgical program is defined as a summary of the operations necessary to develop and validate the geometallurgical model. The geometallurgical model is defined as the function that links georeferenced in-situ geological characteristics and a georeferenced measure of performance in a processing plant. The geometallurgical flowsheet in this study is developed both as a general concept as well as a case-specific illustration based on the example of the Verdalskalk AS industrial mineral operation.
Geometallurgy has developed since the 1970s, primarily on metallic ore operations. In parallel, industrial mineral operations have been optimized through detailed deposit knowledge and market development, without making specific reference to geometallurgical concepts. The Norwegian mining industry is dominated by industrial mineral and construction material operations, and, in this paper, key differences between the industrial mineral and the metallic ore sectors are investigated, along with their influence on the development and the use of economic block models and optimization methodologies. Further, the key levers and factors (mining method selection, processing route, scale, sequence, and cutoff policy) for value creation in industrial mineral operations are discussed, along with how and to what extent geometallurgy has been used. It is concluded that the five key levers cannot be used in industrial minerals operations as effectively as they are used in metallic ore operations. In industrial minerals, in situ strength variations are an important parameter in estimating key performance indicators such as recovery and product quality. When modeling the spatial variation in rock strength potential, additivity issues must be resolved by investigating the process the raw material is exposed to. The Norwegian industrial mineral sector has been using elements of geometallurgy but is facing unresolved issues related to strength variations and the use of measurement while drilling data.
The pressure for saving water by closing the water loops in mineral processing is increasing continuously. The drivers for higher recirculating rates include water scarcity in dry areas, environmental legislation that is becoming stricter in most countries, limitations set for wet tailings management and the increased demands for social licenses to operate. At the same time, to make mineral processing sustainable, the recovery of valuable minerals should be maximized. This leads for a need to close the process water circulation. To see the effect of closed water circulation on metallurgical performance, flotation tests were carried out with nickel concentrate thickener overflow water before and after the process of water purification by dissolved air flotation (DAF). Both total nickel recovery and concentrate grade in laboratory scale flotation tests to the Ni rougher-scavenger concentrate increased after DAF treatment. Chemical and mineralogical characterizations revealed that after DAF treatment, the process water contained fewer metal hydroxides and less fine-grained silicate mineral particles, which is most likely the reason for the improvement in the nickel flotation performance. Based on the feasibility study, improved nickel recovery by DAF treatment of process water can bring economic benefits at a concentrator plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.