Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.
Na/K-ATPase is emerging as an important target for a variety of anticancer metal-based drugs. The interactions of Na/K-ATPase (in its E1 state) with three representative and structurally related cytotoxic gold(iii) complexes, i.e. [Au(bipy)(OH)][PF], bipy = 2,2'-bipyridine; [Au(py-H)(CHCOO)], py-H = deprotonated 6-(1,1-dimethylbenzyl)-pyridine and [Au(bipy-H)(OH)][PF], bipy-H = deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine, are investigated here in depth using a variety of spectroscopic methods, in combination with docking studies. Detailed information is gained on the conformational and structural changes experienced by the enzyme upon binding of these gold(iii) complexes. The quenching constants of intrinsic enzyme fluorescence, the fraction of Trp residues accessible to gold(iii) complexes and the reaction stoichiometries were determined in various cases. Specific hypotheses are made concerning the binding mode of these gold(iii) complexes to the enzyme and the likely binding sites. Differences in their binding behaviour toward Na/K-ATPase are explained on the ground of their distinctive structural features. The present results offer further support to the view that Na/K-ATPase may be a relevant biomolecular target for cytotoxic gold(iii) compounds of medicinal interest and may thus be involved in their overall mode of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.