Motor actions can be facilitated or hindered by psychophysiological states of readiness, to guide rapid adaptive action. Cardiovascular arousal is communicated by cardiac signals conveying the timing and strength of individual heartbeats. Here, we tested how these interoceptive signals facilitate control of motor impulsivity. Participants performed a stop signal task, in which stop cues were delivered at different time points within the cardiac cycle: at systole when the heart contracts (T-wave peak, approximately 300 ms following the R-wave), or at diastole between heartbeats (R-wave peak). Response inhibition was better at systole, indexed by a shorter stop signal reaction time (SSRT), and longer stop signal delay (SSD). Furthermore, parasympathetic control of cardiovascular tone, and subjective sensitivity to interoceptive states, predicted response inhibition efficiency, although these cardiovascular and interoceptive correlations did not survive correction for multiple comparisons. This suggests that response inhibition capacity is influenced by interoceptive physiological cues, such that people are more likely to express impulsive actions during putative states of lower cardiovascular arousal, when frequency and strength of cardiac afferent signalling is reduced.
Impulsivity received considerable attention in the context of drug misuse and certain neuropsychiatric conditions. Because of its great health and well-being importance, it is crucial to understand factors which modulate impulsive behaviour. As a growing body of literature indicates the role of emotional and physiological states in guiding our actions and decisions, we argue that current affective state and physiological arousal exert a significant influence on behavioural impulsivity. As 'impulsivity' is a heterogeneous concept, in this paper, we review key theories of the topic and summarise information about distinct impulsivity subtypes and their methods of assessment, pointing out to the differences between the various components of the construct. Moreover, we review existing literature on the relationship between emotional states, arousal and impulsive behaviour and suggest directions for future research.
Objectives: The consequences of impulsive decisions and actions represent a major source of concern to the health and well-being of individuals and society. It is, therefore, crucial to understand the factors which contribute to impulsive behaviors. Here, we examined how personality traits of behavioral tendencies, interoceptive sensibility as well as transient mood states predict behavioral performance on impulsivity and risk-taking tasks.Method: 574 (121 males; age 18–45) individuals completed self-report personality measures of impulsivity, reward sensitivity, punishment avoidance as well as interoceptive sensibility, undertook a mood assessment and performed a set of cognitive tasks: delay discounting (temporal impulsivity), probability discounting (risk-taking), and reflection impulsivity task. Data were interrogated using principal component analysis, correlations and regression analyses to test mutual relationships between personality traits, interoceptive sensibility, mood state and impulsive behaviors.Results: We observed a clear separation of measures used, both trait and behavioral. Namely, sensation-seeking, reward sensitivity and probability discounting reflected risk-taking. These were separate from measures associated with impulsivity, both trait (negative and positive urgency, premeditation, perseverance) and behavioral (delayed discounting and reflection impulsivity). This separation was further highlighted by their relationship with the current emotional state: positive affect was associated with increased risk-taking tendencies and risky decision-making, while negative emotions were related to heightened impulsivity measures. Interoceptive sensibility was only associated with negative emotions component.Conclusion: Our findings support the proposal that risk-taking and impulsivity represent distinct constructs that are differentially affected by current mood states. This novel insight enhances our understanding of impulsive behaviors.
Highlights: • Increased temporal and motor impulsivity seem to predispose to alcohol use. • Heightened motor impulsivity is also an effect of alcohol use. • Brain regions of impulsive behaviours and emotional experiences overlap • Highly impulsive individuals use alcohol to deal with negative emotional states. • Poor interoceptive abilities may further encourage drinking as a coping mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.