The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible. Here, the current knowledge concerning the chemical modification of GAGs, one of the principal approaches for the study of the structure-function relationships in these molecules, is reviewed. Some additional methods that were applied successfully to the analysis and/or processing of other carbohydrates, but which could be suitable in GAG chemistry, are also discussed.
Heparin, is a complex glycosaminoglycan, derived mainly from pig mucosa, used therapeutically for its anticoagulant activity. Yet, owing largely to the chain complexity, the progressive effects of environmental conditions on heparin structure have not been fully described.A systematic study of the influence of acidic hydrolysis on heparin chain length and substitution has therefore been conducted. Changes in the sulfation pattern, monitored via 2D-NMR, revealed initial de-N-sulfation of the molecule (pH 1/ 40 C) and unexpectedly identified the secondary sulfate of iduronate as more labile than the 6-O-sulfate of glucosamine residues under these conditions (pH 1/ 60 C). Additionally, the loss of sulfate groups, rather than depolymerisation, accounted for most of the reduction in molecular weight. This provides an alternative route to producing partially 2-O-de-sulfated heparin derivatives that avoids using conventional basic conditions and may be of value in the optimisation of processes associated with the production of heparin pharmaceuticals.
Many industrial processes make use of sodium because sodium is the fifth most abundant metal and the seventh most abundant element on Earth. Consequently, there are many sodium-containing industrial wastes that could potentially be used for carbon capture, paving the way towards a circular and biobased economy. For example, a common industrial chemical is NaOH, which is found in black liquor, a by-product of the paper and pulp industry. Nonetheless, the literature available on CO2 absorption capacity of aqueous NaOH is scarce for making a fair comparison with sodium-containing waste. Therefore, to fill this gap and set the foundation for future research on carbon capture, the CO2 absorption capacity of NaOH solutions in a concentration range of 1–8 w/w% was evaluated, a wider range compared with currently available data. The data set presented here enables evaluating the performance of sodium-based wastes, which are complex mixtures and might contain other compounds that enhance or worsen their carbon capture capacity. We designed a customized reactor using a 3D-printer to facilitate in-line measurements and proper mixing between phases without the energy of stirring. The mixing performance was confirmed by computational fluid dynamics simulations. The CO2 absorption capacity was measured via weight analysis and the progress of carbonation using a pH meter and an FTIR probe in-line. At 5 w/w% NaOH and higher, the reaction resulted in precipitation. The solids were analyzed with X-ray diffraction and scanning electron microscope, and nahcolite and natrite were identified. With our setup, we achieved absorption capacities in the range of 9.5 to 78.9 g CO2/L for 1 w/w% and 8 w/w% of NaOH, respectively. The results are in fair agreement with previously reported literature, suggesting that non-forced mixing reactors function for carbon capture without the need of stirring equipment and a possible lower energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.