An analysis is performed with regards to technologically outdated heating plants operating in many areas where fossil fuels such as coal and gas are utilized, in order to consider the alternatives of their modernization. By application of a chart using a variety of alternatives, the economic feasibility of executing two types of modernization of heating plants are explored: a single-fuel gas–steam CHP plant and a coal-fired heating plant to a coal-fired CHP plant with a condensing turbine. This study demonstrates how the selection of modernization technology is affected, in terms of profitability, by the value and variability in time of the price relationships between energy carriers, rapidly growing charges related to CO2 emission allowances, and costs depending on other pollutant emissions that originate from the operation of electricity and heat sources powered by fossil fuels. In both technical cases of modernization, lower prices of energy carriers coupled with CO2 emissions allowances lead to higher prices of electricity that can be sold as additional products following this modernization, and consequently, the specific cost of heat production in the repowered heat sources is lowered. The calculations were performed by the application of models of heating plant modernization applying continuous time notations, which offer the determination of the most suitable time of initiation of this modernization. Such relationships would be difficult to describe in the case of the use of traditional discrete models. In the case of a simultaneous increase in the prices of all main factors affecting the cost of heat generation, such as the price of gas, electricity and CO2 emissions, the fastest modernization of the heating plant to single-fuel gas–steam CHP provides the possibility of the best economic performance.
This paper contains the results of a study in which a novel approach using continuous time notation was applied in the search for the optimum capacity of a gas turbine designed for a dual-fuel gas-steam combined heat and power plant in a parallel system. As a result of the application of mathematical models of any functions that account for variations in time of all integrand quantities, for example prices of energy carriers, the model that was developed provides a way to analyze complex dependencies. The results of calculations obtained as a result of using this notation provide a rational selection of technologies and equipment designed for the energy industry. The results are based on an analysis involving a combined heat and power plant with an extraction-condensing steam turbine and extraction backpressure steam turbine for a wide range of the variability in energy prices and environmental charges corresponding to the current prices and environmental charges. All the curves were obtained using innovative methodology and mathematical model in which the total, discounted profit is calculated at the given moment and expressed as NPV achieved from the operation of dual-fuel gas-steam combined heat and power (CHP) plant.
This paper presents the results of analysis of energy and economic efficiency of the hierarchical gas-gas engine, with a note that a trigeneration system was analyzed, in which the production of electricity, heat and cold are combined. This solution significantly increases the energy efficiency of the gas and gas system compared to a system without cold production. The analysis includes a system comprising a compressor chiller which is driven by an electric motor in the system, as well as a system applying the mechanical work that is carried out via a rotating shaft of rotor-based machines, i.e., a gas turbine and a turboexpander. The comfort of the regulation of the refrigerating power rather promotes the use of a solution including an electric motor. Analysis contains also a schematic diagram of the system with a absorption chiller, which is driven by low-temperature enthalpy of exhaust gases extracted from a hierarchical gas-gas engine. Application of turboexpander with heat regeneration in the trigeneration system is also analyzed. Based on the multi-variant economic and thermodynamic calculations, the most favorable system variant was determined using, among others, the specific cost of cold production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.