This Article focuses on the functional finishing of textiles using nano silver particles (Ag-NPs), produced directly on the fabric by a chemical reduction of silver nitrate by L-ascorbic acid. Antibacterial textiles were made using the screen-printing and padding-squeezing techniques. These methods of textile finishing allow one to obtain the long-lasting finishes exhibiting the effective antibacterial properties against the strains of Escherichia coli and Bacillus subtilis. In this study, a wide range of modern research techniques, which confirmed that these finishes are characterized by the slight migration of the AgNPs from the finished fabric during the textile care, and the long-lasting durability to the washing processes, not published elsewhere until now, was used.
Whisky (whiskey) consists of many trace elements coming from the raw materials used in its fermentation, distillation and maturation processes. These ingredients assure the exceptional organoleptic characteristics of the beverage. Their analysis is important to better control the stages of fermentation, distillation, taste repeatability and for product quality assurance as well as from the brand protection point of view. This article presents the usefulness of modern analytical techniques based on elemental analysis. ICP mass spectrometry and CV atomic absorption spectroscopy were applied to distinguish whisky produced in Scotland from whisky coming from Ireland and the United States. The collected semi-quantitative data were used for multivariate analysis performed using the Statistica 10.0 software. The results showed that Irish whiskey is characterized by quite a high amount of Ba and Ti compared with other samples, which made it possible to distinguish this sample from the others. No strict correlation was found between the type of whisky and the amount of trace elements, however, the projection of objects on the first two components revealed that single malt samples created one cluster.
Wine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of view. Nowadays, wine studies have also been undertaken in order to perform wine categorization and/or to verify the authenticity of products. The main objective of this research was to evaluate the influence of the chosen factors (type of wine, producer, origin) on the levels of 28 elements in 180 wine samples. The concentration of studied elements was determined by ICP-MS (Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Zn), ICP-OES (Ca, Fe, K, Mg, Ti), and CVAAS (Hg) techniques in 79 red, 75 white, and 26 rose wine samples. In general, red wines contained higher values of mean and median of B, Ba, Cr, Cu, Mn, Sr and Zn in contrast to other wine types (white and rose). In white wines (when compared to red and rose wines) higher levels of elements such as Ag, Be, Bi, Cd, Co, Li, K and Ti were determined. In contrast, rose wines were characterized by a higher concentration of Fe and U. The study also revealed that in the case of 18 samples, the maximum levels of some metals (Cd—8 samples, Pb—9 samples, Cu—1 sample) were slightly exceeded according to the OIV standards, while for Zn and Ti in any wine sample the measured concentrations of these metals were above the permissible levels. Thus, it can be stated that the studied wines contained, in general, lower levels of heavy metals, suggesting that they should have no effect on the safety of consumption. The results also showed higher pH level for red wines as a consequence of the second fermentation process which is typically carried out for this type of wine (malolactic fermentation). The highest median value of pH was reported for Merlot-based wines, while the lowest was for Riesling. It is assumed that dry Riesling has a higher content of tartaric and malic acid than dry Chardonnay grown in the same climate. From all of the studied countries, wines from Poland seemed to present one of the most characteristic elemental fingerprints since for many elements relatively low levels were recorded. Moreover, this study revealed that also wine samples from USA and Australia can be potentially discriminated from the rest of studied wines. For USA the most characteristic metal for positive identification of the country of origin seems to be uranium, whereases for Australia – strontium and manganese. Based on the highly reduced set of samples, it was not possible to differentiate the studied wine products according to the grape variety other than Syrah, and partially Chardonnay. Since all the Syrah-based samples originated from the same country (Australia) thus, the observed grouping should be more related with the country of origin than the grape variety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.