Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207–1346, 1383–1425, 1455–1482, 1533–1574, 1627–1646, and 1694–1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581–1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.
The article presents a detailed analysis of changes in air temperature in Toruń in the period 1871-2010 on the basis of homogenised monthly, seasonal and annual air temperature series which have been newly constructed (i.e. extended by the 50 years of . Over the 140-year study period, a sizeable and statistically significant increase of 0.1°C per decade was found in the air temperature in Toruń. The greatest increases occurred for spring and winter, at 0.12 and 0.11°C, respectively. A lesser warming, meanwhile, was recorded for autumn (0.10°C/10 years), and particularly for summer (0.07°C/10 years). The air temperature trends are statistically significant for all seasons. Air temperature differences between the monthly averages of three analysed subperiods (1871-1900, 1901-1950 and 1951-2010) and averages for the entire period under review rarely exceeded ± 0.5°C. In all of these periods, the highest average air temperatures occurred in July and the lowest in January. The period of 1981-2010 had the highest frequency of occurrence of very and extremely warm seasons and years. Meanwhile, the highest frequency of very and extremely cool seasons and years was recorded in the 1940s and in the nineteenth century. In the period of 1871-2010, winters shortened markedly (by 7%) and summers lengthened by 3.8%. All of the presented aspects of air temperature in Toruń, which is representative of the climate of central Poland, are in close agreement with the findings of analogous studies of the same for other areas of Poland and Central Europe.
Abstract. The history of drought occurrence in Poland in the last millennium is poorly known. To improve this knowledge we have conducted a comprehensive analysis using both proxy data (documentary and dendrochronological) and instrumental measurements of precipitation. The paper presents the main features of droughts in Poland in recent centuries, including their frequency of occurrence, coverage, duration, and intensity. The reconstructions of droughts based on all the mentioned sources of data covered the period 996–2015. Examples of megadroughts were also chosen using documentary evidence, and some of them were described. Various documentary sources have been used to identify droughts in the area of Poland in the period 1451–1800 and to estimate their intensity, spatial coverage, and duration. Twenty-two local chronologies of trees (pine, oak, and fir) from Poland were taken into account for detecting negative pointer years (exceptionally narrow rings). The delimitation of droughts based on instrumental data (eight long-term precipitation series) was conducted using two independent approaches (Standard Precipitation Index, SPI, calculated for 1-, 3-, and 24-month timescales, and a new method proposed by authors). For delimitation of droughts (dry months), the criteria used were those proposed by McKee et al. (1993) and modified for the climate conditions of Poland by Łabędzki (2007). More than 100 droughts were found in documentary sources in the period 1451–1800, including 17 megadroughts. A greater than average number of droughts were observed in the second halves of the 17th century and the 18th century in particular. Dendrochronological data confirmed this general tendency in the mentioned period. Analysis of SPI (including its lowest values, i.e. droughts) showed that the long-term frequency of droughts in Poland has been stable in the last two or three centuries. Extreme and severe droughts were most frequent in the coastal part of Poland and in Silesia. Most droughts had a duration of 2 months (about 60 %–70 %) or 3–4 months (10 %–20 %). Frequencies of droughts with a duration of 5-or-more months were lower than 10 %. The frequency of droughts of all categories in Poland in the instrumental period 1722–2015 was greatest in winter, while in the documentary evidence (1451–1800) droughts in this season are rarely mentioned. The occurrence of negative pointer years (a good proxy for droughts) was compared with droughts delimited based on documentary and instrumental data. A good correspondence was found between the timing of occurrence of droughts identified using all three kinds of data (sources).
ABSTRACT:The temperature measurements inŻagań were made within the Mannheim network of stations established for Europe and North America by the Palatine Meteorological Society in 1780. The meteorological observations made there in the period 1781-1792 were taken according to the rules for observers ('Monitum ad observatores') written by Johann Hemmer (Director of the Palatine Meteorological Society), using calibrated instruments sent by the Society. Source raw data from three measurements a day, taken at morning, noon and evening and available in the publication Ephemerides Societatis Meteorologicae Palatinae have been used for the analysis. Daily means originally calculated using Mannheim's formula have been corrected to the true daily mean based on statistical analysis using hourly temperature data from modern meteorological station in Wrocław, located nearŻagań. The mean annual air temperature for the study period (7.9• C) was about 0.8• C lower than its value for the period 1981-2010, calculated from Grabik data (the nearest station toŻagań).The coldest year was 1785 (6.3• C), while the warmest was 1781 (9.6 • C). The clearly colder sub-period 1784-1788 was probably significantly influenced by the eruption of the Laki volcano in Iceland in 1783/1784. Warmer temperatures than we have today (by +0.4• C) occurred only in summer. However, the greatest cooling was observed in autumn and winter (temperatures lower than today in both seasons by 1.1 • C). Summer and in particular winter were markedly longer in historical times in comparison to our present-day climate, while other seasons were shorter. Investigations confirm the correctness of the view based on multiproxy data that the continentality of the climate in Poland in the 18th century was greater than today. Both daily and monthly temperature series fromŻagań are strongly correlated with other 18th-century temperature series from Poland and Central Europe (with a correlation coefficient mostly higher than 0.90).
Abstract. In recent years, instrumental observations have become increasingly important in climate research, allowing past daily-to-decadal climate variability and weather extremes to be explored in greater detail. The 18th century saw the formation of several short-lived meteorological networks of which the one organised by the Societas Meteorologica Palatina is arguably the most well known. This network stood out as one of the few that efficiently managed to control its members, integrating, refining, and publishing measurements taken from numerous stations around Europe and beyond. Although much has been written about the network in both history, science, and individual prominent series used for climatological studies, the actual measurements have not yet been digitised and published in extenso. This paper represents an important step towards filling this perceived gap in research. Here, we provide an inventory listing the availability of observed variables for the 37 stations that belonged to the society's network and discuss their historical context. Most of these observations have been digitised, and a considerable fraction has been converted and formatted. In this paper, we focus on the temperature and pressure measurements, which have been corrected and homogenised. We then demonstrate their potential for climate research by analysing two cases of extreme weather. The recovered series will have wide applications and could contribute to a better understanding of the mechanisms behind climatic variations and extremes as well as the societal reactions to adverse weather. Even the shorter series could be ingested into reanalyses and improve the quality of large-scale reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.