Ring-opening of epoxides furnishing either linear or branched products belongs to the group of classic transformations in organic synthesis. However, the regioselective cross-electrophile coupling of aryl epoxides with aryl halides still represents a key challenge. Herein, we report that the vitamin B 12 /Ni dual-catalytic system allows for the selective synthesis of linear products under blue-light irradiation, thus complementing methodologies that give access to branched alcohols. Experimental and theoretical studies corroborate the proposed mechanism involving alkylcobalamin as an intermediate in this reaction.
Oxetanes are valuable
building blocks due to their well-explored
propensity to undergo ring-opening reactions with nucleophiles. However,
their application as precursors of radical species is still elusive.
Herein, we present a bioinspired cobalt-catalysis-based strategy to
access unprecedented modes of radical reactivity via oxetane ring-opening.
This powerful approach gives access to nucleophilic radicals that
engage in reactions with SOMOphiles and low-valent transition metals.
Importantly, the regioselectivity of these processes complements known
methodologies.
Co complex – Cby(OMe)7 ‐ enables consecutive generation of alkyl and acyl radicals from adequately designed carboxylic acids possessing a halogen atom in theirs structures. Mechanistic studies reveal that alkyl corrins forms at much higher rate than the respective acyl derivatives enabling selective reactions with activated olefins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.