The process of secondary succession is one of the most significant threats to non-forest (natural and semi-natural open) Natura 2000 habitats in Poland; shrub and tree encroachment taking place on abandoned, low productive agricultural areas, historically used as pastures or meadows, leads to changes to the composition of species and biodiversity loss, and results in landscape transformations. There is a perceived need to create a methodology for the monitoring of vegetation succession by airborne remote sensing, both from quantitative (area, volume) and qualitative (plant species) perspectives. This is likely to become a very important issue for the effective protection of natural and semi-natural habitats and to advance conservation planning. A key variable to be established when implementing a qualitative approach is the remote sensing data acquisition date, which determines the developmental stage of trees and shrubs forming the succession process. It is essential to choose the optimal date on which the spectral and geometrical characteristics of the species are as different from each other as possible. As part of the research presented here, we compare classifications based on remote sensing data acquired during three different parts of the growing season (spring, summer and autumn) for five study areas. The remote sensing data used include high-resolution hyperspectral imagery and LiDAR (Light Detection and Ranging) data acquired simultaneously from a common aerial platform. Classifications are done using the random forest algorithm, and the set of features to be classified is determined by a recursive feature elimination procedure. The results show that the time of remote sensing data acquisition influences the possibility of differentiating succession species. This was demonstrated by significant differences in the spatial extent of species, which ranged from 33.2% to 56.2% when comparing pairs of maps, and differences in classification accuracies, which when expressed in values of Cohen’s Kappa reached ~0.2. For most of the analysed species, the spring and autumn dates turned out to be slightly more favourable than the summer one. However, the final recommendation for the data acquisition time should take into consideration the phenological cycle of deciduous species present within the research area and the abiotic conditions.
Secondary succession is a process that is often observed taking place in former agricultural ecosystems. Its characteristics are especially important in protected areas, for the purposes of monitoring and protective measures. Effective mapping of succession is facilitated by the development of automated methodologies based on remote sensing data, which are capable of complementing traditional field research. The objective of this work is to determine whether the classification of high-resolution hyperspectral and light detection and ranging (LiDAR) data with the use of the random forest algorithm enables us to produce an accurate succession species map. First, feature extraction techniques are applied to 1-m hyperspectral images and a ∼7 point∕m 2 dense point cloud. Minimum noise fraction layers and vegetation indices are calculated from the hyperspectral data and geometry related indices from the LiDAR data. Finally, the recursive feature elimination algorithm is applied to the combined dataset and the reference polygons to select the optimal set of features for subsequent classification. The results indicate that the proposed methodology has the potential to be used operationally. The final classification product is characterized by a relatively high Cohen's kappa value of 0.68, with single species classified with various accuracies, expressed by F1 scores ranging from 0.45 to 0.87. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
The succession process of trees and shrubs is considered as one of the threats to non-forest Natura 2000 habitats. Poland, as a member of the European Union, is obliged to monitor these habitats and preserve them in the best possible condition. If threats are identified, it is necessary to take action—as part of the so-called active protection—that will ensure the preservation of habitats in a non-deteriorated condition. At present, monitoring of Natura 2000 habitats is carried out in expert terms, i.e., the habitat conservation status is determined during field visits. This process is time- and cost-intensive, and it is subject to the subjectivism of the person performing the assessment. As a result of the research, a methodology for the identification and monitoring of the succession process in non-forest Natura 2000 habitats was developed, in which multi-sensor remote sensing data are used—airborne laser scanner (ALS) and hyperspectral (HS) data. The methodology also includes steps required to analyse the dynamics of the succession process in the past, which is done using archival photogrammetric data (aerial photographs and ALS data). The algorithms implemented within the methodology include structure from motion and dense image matching for processing the archival images, segmentation and Voronoi tessellation for delineating the spatial extent of succession, machine learning random forest classifier, recursive feature elimination and t-distributed stochastic neighbour embedding algorithms for succession species differentiation, as well as landscape metrics used for threat level analysis. The proposed methodology has been automated and enables a rapid assessment of the level of threat for a whole given area, as well as in relation to individual Natura 2000 habitats. The prepared methodology was successfully tested on seven research areas located in Poland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.