Scientists, humanists, and art lovers alike value art not just for its beauty, but also for its social and epistemic importance; that is, for its communicative nature, its capacity to increase one's self-knowledge and encourage personal growth, and its ability to challenge our schemas and preconceptions. However, empirical research tends to discount the importance of such social and epistemic outcomes of art engagement, instead focusing on individuals' preferences, judgments of beauty, pleasure, or other emotional appraisals as the primary outcomes of art appreciation. Here, we argue that a systematic neuroscientific study of art appreciation must move beyond understanding aesthetics alone, and toward investigating the social importance of art appreciation. We make our argument for such a shift in focus first, by situating art appreciation as an active social practice. We follow by reviewing the available psychological and cognitive neuroscientific evidence that art appreciation cultivates socio-epistemic skills such as self- and other-understanding, and discuss philosophical frameworks which suggest a more comprehensive empirical investigation. Finally, we argue that focusing on the socio-epistemic values of art engagement highlights the important role art plays in our lives. Empirical research on art appreciation can thus be used to show that engagement with art has specific social and personal value, the cultivation of which is important to us as individuals, and as communities.
What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer’s experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer’s visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer’s visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder’s general visual capacity in shaping art appreciation.
We studied how stimulus attributes (angle polarity and perspective) and data-driven signals (motion parallax and binocular disparity) affect recovery of 3-D shape. We used physical stimuli, which consisted of two congruent trapezoids forming a dihedral angle. To study the effects of the stimulus attributes, we used 2 × 2 combinations of convex/concave angles and proper/reverse perspective cues. To study the effects of binocular disparity and motion parallax, we used 2 × 2 combinations of monocular/binocular viewing with moving/stationary observers. The task was to report the depth of the right vertical edge relative to a fixation point positioned at a different depth. In Experiment 1 observers also had the option of reporting that the right vertical edge and fixation point were at the same depth. However, in Experiment 2, observers were only given two response options: is the right vertical edge in front of/behind the fixation point? We found that across all stimulus configurations, perspective is a stronger cue than angle polarity in recovering 3-D shape; we also confirm the bias to perceive convex compared to concave angles. In terms of data-driven signals, binocular disparity recovered 3-D shape better than motion parallax. Interestingly, motion parallax improved performance for monocular viewing but not for binocular viewing.
Laughter is an auditory stimulus that powerfully conveys positive emotion. We investigated how laughter influenced visual perception of facial expressions. We simultaneously presented laughter with a happy, neutral, or sad schematic face. The emotional face was briefly presented either alone or among a crowd of neutral faces. We used a matching method to determine how laughter influenced the perceived intensity of happy, neutral, and sad expressions. For a single face, laughter increased the perceived intensity of a happy expression. Surprisingly, for a crowd of faces laughter produced an opposite effect, increasing the perceived intensity of a sad expression in a crowd. A follow-up experiment revealed that this contrast effect may have occurred because laughter made the neutral distracter faces appear slightly happy, thereby making the deviant sad expression stand out in contrast. A control experiment ruled out semantic mediation of the laughter effects. Our demonstration of the strong context dependence of laughter effects on facial expression perception encourages a re-examination of the previously demonstrated effects of prosody, speech content, and mood on face perception, as they may similarly be context dependent.
Sounds enhance our ability to detect, localize, and respond to co-occurring visual targets. Research suggests that sounds improve visual processing by resetting the phase of ongoing oscillations in visual cortex. However, it remains unclear what information is relayed from the auditory system to visual areas and if sounds modulate visual activity even in the absence of visual stimuli (e.g., during passive listening). Using intracranial electroencephalography (iEEG) in humans, we examined the sensitivity of visual cortex to three forms of auditory information during a passive listening task: auditory onset responses, auditory offset responses, and rhythmic entrainment to sounds. Because some auditory neurons respond to both sound onsets and offsets, visual timing and duration processing may benefit from each. Additionally, if auditory entrainment information is relayed to visual cortex, it could support the processing of complex stimulus dynamics that are aligned between auditory and visual stimuli. Results demonstrate that in visual cortex, amplitude-modulated sounds elicited transient onset and offset responses in multiple areas, but no entrainment to sound modulation frequencies. These findings suggest that activity in visual cortex (as measured with iEEG in response to auditory stimuli) may not be affected by temporally fine-grained auditory stimulus dynamics during passive listening (though it remains possible that this signal may be observable with simultaneous auditory-visual stimuli). Moreover, auditory responses were maximal in low-level visual cortex, potentially implicating a direct pathway for rapid interactions between auditory and visual cortices. This mechanism may facilitate perception by time-locking visual computations to environmental events marked by auditory discontinuities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.