Summary The diagnosis and therapy of cervical vertebral stenotic myelopathy (CVSM) are challenging and have been most frequently described in racehorses. We aimed to analyse CVSM cases presented for diagnostic work‐up and treatment in a nonracing horse population. We hypothesised that our diagnostic work‐up protocol including clinical/orthopaedic/neurological/radiographic and myelographic examinations may provide practical reference points for in vivo diagnosis/prognosis and adequate CVSM management. Medical records from 2010 to 2015 were reviewed retrospectively. Cases were included if our standardised work‐up protocol was followed, there was no evidence of any infectious diseases causing the neurological signs, and native cervical radiographs and myelograms confirmed CVSM. Age/breed/sex/type of performance/degree of neurological deficits and number/sites/quality/therapy of stenosis were recorded. Sixty‐two horses met the inclusion criteria. The majority of the horses were aged 5–10 years (44%) or >10 years (35%); nine horses (15%) were 1–4 years and four <1 year (6%) old. Forty‐six horses were Warmbloods (73%), 10 ponies (16%) and six of other breeds (11%). Males were more affected (69%) than females (31%). Sixty‐one percent were pleasure‐horses, 26% were sport‐horses and no information was available for 13%. Most cases presented with mild–moderate neurological signs (grade 2/5 = 18%, grade 2–3/5 = 31%). On myelograms, 23 horses (37%) had single‐level, 22 (35%) had double‐level, and eight (13%) triple‐level stenosis, while nine cases (15%) did not have stenosis. Fifty horses (55%) showed dynamic and 41 (45%) static stenosis. Dynamic stenosis was more common (46%) than static (29%) stenosis and/or combined stenosis (25%). Stenoses were more frequently observed in the mid‐to‐caudal vertebrae. Static stenoses tended to be located more caudally. Based on our protocol, 15% of horses were subjected to euthanasia without therapy, 62% treated conservatively and 23% underwent cervical ventral interbody fusion. In conclusion, our diagnostic work‐up protocol provided practical reference points for in vivo diagnosis/prognosis and adequate management of CVSM in a nonracing horse population.
Measurements of the root canal during endodontic treatment have a significant influence on the course of the therapeutic process as well as on its final result in both human and veterinary medicine. The apical constriction should be the termination point for the preparation and filling of the root canal. This research was conducted with the use of a Septodont kit consisting of a small chamber filled with the examined solution in which a healthy second incisor was placed. The step back method was applied for the root canal preparation and master apical file of 30 was used. The working length was 22 mm. The examination was conducted with the use of steel as well as nickel titanium hand instruments. Different irrigation solutions and two types of apex locators were used. Measurements of the working length of the root canal showed dependence on the size of the instrument. Examinations carried out in various environments showed that analogical measurements were obtained only for sodium hypochlorite solutions. In other environments the measured sections were shortened. Comparative examinations with the use of steel instruments demonstrated insignificant measurement differences. Compared to these results, the measurements in nickel titanium group were characterized by more considerable deviations.
Recent advances in human fascia research have shed new light on the role of the fascial network in movement perception and coordination, transmission of muscle force, and integrative function in body biomechanics. Evolutionary adaptations of equine musculoskeletal apparatus that assure effective terrestrial locomotion are employed in equestrianism, resulting in the wide variety of movements in performing horses, from sophisticated dressage to jumping and high-speed racing. The high importance of horse motion efficiency in the present-day equine industry indicates the significance of scientific knowledge of the structure and physiology of equine fasciae. In this study, we investigated the structure and innervation of the deep fascia of the equine forelimb by means of anatomical dissection, histology and immunohistochemistry. Macroscopically, the deep fascia appears as a dense, glossy and whitish lamina of connective tissue continuous with its fibrous reinforcements represented by extensor and flexor retinacula. According to the results of our histological examination, the general structure of the equine forelimb fascia corresponds to the characteristics of the human deep fasciae of the limbs. Although we did find specific features in all sample types, the general composition of all examined fascial tissues follows roughly the same scheme. It is composed of dense, closely packed collagen fibers organized in layers of thick fibrous bundles with sparse elastic fibers. This compact tissue is covered from both internal and external sides by loosely woven laminae of areolar connective tissue where elastic fibers are mixed with collagen. Numerous blood vessels running within the loose connective tissue contribute to the formation of regular vascular network throughout the compact layer of the deep fascia and retinacula. We found nerve fibers of different calibers in all samples analyzed. The fibers are numerous in the areolar connective tissue and near the blood vessels but scarce in the compact layers of collagen. We did not observe any Ruffini, Pacini or Golgi-Mazzoni corpuscles. In conclusion, the multilayered composition of compact bundles of collagen, sparse elastic fibers in the deep fascia and continuous transition into retinacula probably facilitate resistance to gravitational forces and volume changes during muscle contraction as well as transmission of muscle force during movement. However, further research focused on innervation is needed to clarify whether the deep fascia of the equine forelimb plays a role in proprioception and movement coordination.
The excessive temperature fluctuations during dental implant site preparation may affect the process of bone-implant osseointegration. In the presented studies, we aimed to assess the quality of cooling during the use of 3 different dental implant systems (BEGO®, NEO BIOTECH®, and BIOMET 3i®). The swine rib was chosen as a study model. The preparation of dental implant site was performed with the use of 3 different speeds of rotation (800, 1,200, and 1,500 rpm) and three types of cooling: with saline solution at room temperature, with saline solution cooled down to 3°C, and without cooling. A statistically significant difference in temperature fluctuations was observed between BEGO and NEO BIOTECH dental systems when cooling with saline solution at 3°C was used (22.3°C versus 21.8°C). In case of all three evaluated dental implant systems, the highest temperature fluctuations occurred when pilot drills were used for implant site preparation. The critical temperature, defined in the available literature, was exceeded only in case of pilot drills (of all 3 systems) used at rotation speed of 1,500 rpm without cooling.
Despite the great progress in the field of tendon injuries and chronic tendinopathies in recent years, treatment of these conditions is still challenging. Research utilising animal models is crucial for further advancement in tendon research, with the rabbit being a commonly used species in this field. The objective of the present study was to comprehensively describe the macro‐ and microanatomy of the common calcanean tendon (tendo Achillei), together with associated structures. Eight female New Zealand rabbits were subjected to anatomical dissection and histologic analysis, revealing significant species‐specific features. The soleus muscle presented a thin, spindle shape with no tendon of insertion and attached directly to the lateral gastrocnemius muscle. Therefore, it does not contribute to the formation of the common calcanean tendon. The calcaneal tendon of the semitendinosus muscle was identified as a strong tendinous band at the medial side of the medial gastrocnemius muscle and the superficial digital flexor muscle and tendon distally. The saphenous artery was accompanied by the medial saphenous vein and characteristic accessory medial saphenous vein. The complex structure of the paratendinous connective tissue is described, with the paratenon being contiguous with the epitenon of the individual tendons and epimysium of associated muscles. At the level of the calcaneal tuber, the retromalleolar fat pad was identified, adhering to the cranial surface of the conjoint gastrocnemius tendon. Histologic studies confirmed the presence of the subtendinous calcaneal bursa of superficial digital flexor tendon and the bursa of calcaneal tendon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.