Oxygen‐depleted areas are spreading in coastal and offshore waters worldwide, but the implication for production and bioaccumulation of neurotoxic methylmercury (MeHg) is uncertain. We combined observations from six cruises in the Baltic Sea with speciation modeling and incubation experiments to gain insights into mercury (Hg) dynamics in oxygen depleted systems. We then developed a conceptual model describing the main drivers of Hg speciation, fluxes, and transformations in water columns with steep redox gradients. MeHg concentrations were 2–6 and 30–55 times higher in hypoxic and anoxic than in normoxic water, respectively, while only 1–3 and 1–2 times higher for total Hg (THg). We systematically detected divalent inorganic Hg (HgII) methylation in anoxic water but rarely in other waters. In anoxic water, high concentrations of dissolved sulfide cause formation of dissolved species of HgII: HgS2H−(aq) and Hg (SH)20(aq). This prolongs the lifetime and increases the reservoir of HgII readily available for methylation, driving the high MeHg concentrations in anoxic zones. In the hypoxic zone and at the hypoxic‐anoxic interface, Hg concentrations, partitioning, and speciation are all highly dynamic due to processes linked to the iron and sulfur cycles. This causes a large variability in bioavailability of Hg, and thereby MeHg concentrations, in these zones. We find that zooplankton in the summertime are exposed to 2–6 times higher MeHg concentrations in hypoxic than in normoxic water. The current spread of hypoxic zones in coastal systems worldwide could thus cause an increase in the MeHg exposure of food webs.
Cellular uptake of dissolved methylmercury (MeHg) by phytoplankton is the most important point of entry for MeHg into aquatic food webs. However, the process is not fully understood. In this study we investigated the influence of chemical speciation on rate constants for MeHg accumulation by the freshwater green microalga Selenastrum capricornutum. We used six MeHg–thiol complexes with moderate but important structural differences commonly found in the environment. Rate constants for MeHg interactions with cells were determined for the MeHg–thiol treatments and a control assay containing the thermodynamically less stable MeHgOH complex. We found both elevated amounts of MeHg associated with whole cells and higher MeHg association rate constants in the control compared to the thiol treatments. Furthermore, the association rate constants were lower when algae were exposed to MeHg complexes with thiols of larger size and more “branched” chemical structure compared to complexes with simpler structure. The results further demonstrated that the thermodynamic stability and chemical structure of MeHg complexes in the medium is an important controlling factor for the rate of MeHg interactions with the cell surface, but not for the MeHg exchange rate across the membrane. Our results are in line with uptake mechanisms involving formation of MeHg complexes with cell surface ligands prior to internalization.
Methylmercury (MeHg) is a potent neurotoxin commonly found in aquatic environments and primarily formed by microbial methylation of inorganic divalent mercury (Hg(II)) under anoxic conditions. Recent evidence, however, points to the production of MeHg also in oxic pelagic waters, but the magnitude and the drivers for this process remain unclear. Here, we performed a controlled experiment testing the hypothesis that inputs of terrestrial dissolved organic matter (tDOM) to coastal waters enhance MeHg formation via increased bacterial activity. Natural brackish seawater from a coastal area of the Baltic Sea was exposed to environmentally relevant levels of Hg(II) and additions of tDOM according to climate change scenarios. MeHg formation was observed to be coupled to elevated bacterial production rates, which, in turn, was linked to input levels of tDOM. The increased MeHg formation was, however, not coupled to any specific change in bacterial taxonomic composition nor to an increased abundance of known Hg(II) methylation genes. Instead, we found that the abundance of genes for the overall bacterial carbon metabolism was higher under increased tDOM additions. The findings of this study may have important ecological implications in a changing global climate by pointing to the risk of increased exposure of MeHg to pelagic biota.
Methylmercury (MeHg) is the most important and the most abundant organic Hg pollutant in the aquatic ecosystem that can affect human health through biomagnification. It is the most toxic organic Hg form, which occurs naturally and by human-induced contamination in water and is further biomagnified in the aquatic food web. MeHg is the only Hg form that accumulates in living organisms and is able to cross the blood–brain barrier, presenting an enormous health risk. Anthropogenic activity increases eutrophication of coastal waters worldwide, which promotes algae blooms. Microalgae, as primary producers, are especially sensitive to MeHg exposure in water and are an important entrance point for MeHg into the aquatic food web. MeHg assimilated by microalgae is further transferred to fish, wildlife and, eventually, humans as final consumers. MeHg biomagnifies and bioaccumulates in living organisms and has serious negative health effects on humans, especially newborns and children. Knowledge of the microalgae−MeHg interaction at the bottom of the food web provides key insights into the control and prevention of MeHg exposure in humans and wildlife. This review aims to summarize recent findings in the literature on the microalgae–MeHg interaction, which can be used to predict MeHg transfer and toxicity in the aquatic food web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.