Endoplasmic reticulum (ER) stress conditions promote a cellular adaptive mechanism called the unfolded protein response (UPR) that utilizes three stress sensors, inositol‐requiring protein 1, protein kinase RNA‐like ER kinase, and activating transcription factor 6. These sensors activate a number of pathways to reduce the stress and facilitate cell survival. While much is known about the mechanisms involved that modulate apoptosis during chronic stress, less is known about the transition between the prosurvival and proapoptotic factors that determine cell fate. Here, we employed a genetic screen that utilized three different pharmacological stressors to induce ER stress in a human‐immortalized airway epithelial cell line, immortalized human bronchial epithelial cells. We followed the stress responses over an 18‐h time course and utilized real‐time monitoring of cell survival, next‐generation sequencing, and quantitative real‐time PCR to identify and validate genes that were upregulated with all three commonly employed ER stressors, inhibitor of calpain 1, tunicamycin, and thapsigargin. growth arrest and DNA damage‐inducible alpha (GADD45A), a proapoptotic factor, and regulator of calcineurin 1 (RCAN1) mRNAs were identified and verified by showing that small interfering RNA (siRNA) knockdown of GADD45A decreased CCAAT‐enhancer‐binding protein homologous protein (a.k.a DDIT3), BCL2‐binding component 3 (a.k.a. BBC3), and phorbol‐12‐myristate‐13‐acetate‐induced protein 1 expression, 3 proapoptotic factors, and increased cell viability during ER stress conditions, whereas siRNA knockdown of RCAN1 dramatically decreased cell viability. These results suggest that the relative levels of these two genes regulate cell fate decisions during ER stress independent of the type of ER stressor.
Skin lesions in CD patients during biological therapy may result from significantly increased concentrations of IL-17A and IL-23, which are strongly associated with TNF-α/Th1 immune pathways.
Synonymous or silent mutations are often overlooked in genetic analyses for disease-causing mutations unless they are directly associated with potential splicing defects. More recent studies, however, indicate that some synonymous single polynucleotide polymorphisms (sSNPs) are associated with changes in protein expression, and in some cases, protein folding and function. The impact of codon usage and mRNA structural changes on protein translation rates and how they can affect protein structure and function is just beginning to be appreciated. Examples are given here that demonstrate how synonymous mutations alter the translational kinetics and protein folding and/or function. The mechanism for how this occurs is based on a model in which codon usage modulates the translational rate by introducing pauses caused by nonoptimal or rare codons or by introducing changes in the mRNA structure, and this in turn influences co-translational folding. Two examples of this include the multidrug resistance protein (p-glycoprotein) and the cystic fibrosis transmembrane conductance regulator gene (CFTR). CFTR is also used here as a model to illustrate how synonymous mutations can be examined using in silico predictive methods to identify which sSNPs have the potential to change protein structure. The methodology described here can be used to help identify “non-silent” synonymous mutations in other genes.Electronic supplementary materialThe online version of this article (doi:10.1186/s11658-016-0025-x) contains supplementary material, which is available to authorized users.
Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next‐generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.