SummarySelected barley miRNAs and their targets are regulated upon heat stress. Splicing of introns carrying miRNAs was induced by heat and correlated with the accumulation of mature miRNA.
BackgroundMicroRNAs are the key post-transcriptional regulators of gene expression in development and stress responses. Thus, precisely quantifying the level of each particular microRNA is of utmost importance when studying the biology of any organism.DescriptionThe mirEX 2.0 web portal (http://www.combio.pl/mirex) provides a comprehensive platform for the exploration of microRNA expression data based on quantitative Real Time PCR and NGS sequencing experiments, covering various developmental stages, from wild-type to mutant plants. The portal includes mature and pri-miRNA expression levels detected in three plant species (Arabidopsis thaliana, Hordeum vulgare and Pellia endiviifolia), and in A. thaliana miRNA biogenesis pathway mutants. In total, the database contains information about the expression of 461 miRNAs representing 268 families. The data can be explored through the use of advanced web tools, including (i) a graphical query builder system allowing a combination of any given species, developmental stages and tissues, (ii) a modular presentation of the results in the form of thematic windows, and (iii) a number of user-friendly utilities such as a community-building discussion system and extensive tutorial documentation (e.g., tooltips, exemplary videos and presentations). All data contained within the mirEX 2.0 database can be downloaded for use in further applications in a context-based way from the result windows or from a dedicated web page.ConclusionsThe mirEX 2.0 portal provides the plant research community with easily accessible data and powerful tools for application in multi-conditioned analyses of miRNA expression from important plant species in different biological and developmental backgrounds.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0533-2) contains supplementary material, which is available to authorized users.
BackgroundMicroRNAs (miRNAs) regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19). However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely.ResultsTo investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3′ UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element.ConclusionsSeven of the eight barley miRNA genes characterized in this study contain introns with their respective transcripts undergoing developmentally specific processing events prior to the dicing out of pre-miRNA species from their pri-miRNA precursors. The observed tendency to maintain the intron encoding miR156g within the transcript, and preferences in splicing the miR1126-harboring intron, may suggest the existence of specific regulation of the levels of intron-derived miRNAs in barley.
Phosphorus (P) in plants is taken from soil as an inorganic phosphate (Pi) and is one of the most important macroelements in growth and development. Plants actively react to Pi starvation by the induced expression of Pi transporters, MIR399, MIR827, and miR399 molecular sponge – IPS1 genes and by the decreased expression of the ubiquitin-conjugating enzyme E2 (PHOSPHATE2 – PHO2) and Pi sensing and transport SPX-MFS genes. The PHO2 protein is involved in the degradation of Pi transporters PHT1;1 (from soil to roots) and PHO1 (from roots to shoots). The decreased expression of PHO2 leads to Pi accumulation in shoots. In contrast, the pho1 mutant shows a decreased level of Pi concentration in shoots. Finally, Pi starvation leads to decreased Pi concentration in all plant tissues. Little is known about plant Pi homeostasis in other abiotic stress conditions. We found that, during the first hour of heat stress, Pi accumulated in barley shoots but not in the roots, and transcriptomic data analysis as well as RT-qPCR led us to propose an explanation for this phenomenon. Pi transport inhibition from soil to roots is balanced by lower Pi efflux from roots to shoots directed by the PHO1 transporter. In shoots, the PHO2 mRNA level is decreased, leading to an increased Pi level. We concluded that Pi homeostasis in barley during heat stress is maintained by dynamic changes in Pi-related genes expression.
In this article a novel mechanism of retrograde signaling by chloroplasts during stress is described. This mechanism involves the DNA/RNA binding protein WHIRLY1 as a regulator of microRNA levels. By virtue of its dual localization in chloroplasts and the nucleus of the same cell, WHIRLY1 was proposed as an excellent candidate coordinator of chloroplast function and nuclear gene expression. Comparison of wild-type and transgenic plants with an RNAi-mediated knockdown of WHIRLY1 showed, that the transgenic plants were unable to cope with continuous high light conditions. They were impaired in production of several microRNAs mediating post-transcriptional responses during stress. The results support a central role of WHIRLY1 in retrograde signaling and also underpin a so far underestimated role of microRNAs in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.