The joint European Space Agency-Japan Aerospace Exploration Agency (ESA-JAXA) Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) mission is scheduled for launch in 2016 and features the first atmospheric Cloud Profiling Radar (CPR) with Doppler capability in space. Here, the uncertainty of the CPR Doppler velocity measurements in cirrus clouds and large-scale precipitation areas is discussed. These regimes are characterized by weak vertical motion and relatively horizontally homogeneous conditions and thus represent optimum conditions for acquiring high-quality CPR Doppler measurements. A large dataset of radar reflectivity observations from ground-based radars is used to examine the homogeneity of the cloud fields at the horizontal scales of interest. In addition, a CPR instrument model that uses as input ground-based radar observations and outputs simulations of CPR Doppler measurements is described. The simulator accurately accounts for the beam geometry, nonuniform beam-filling, and signal integration effects, and it is applied to representative cases of cirrus cloud and stratiform precipitation. The simulated CPR Doppler velocities are compared against those derived from the ground-based radars. The unfolding of the CPR Doppler velocity is achieved using simple conditional rules and a smoothness requirement for the CPR Doppler measurements. The application of nonuniform beam-filling Doppler velocity bias-correction algorithms is found necessary even under these optimum conditions to reduce the CPR Doppler biases. Finally, the analysis indicates that a minimum along-track integration of 5000 m is needed to reduce the uncertainty in the CPR Doppler measurements to below 0.5 m s 21 and thus enable the detection of the melting layer and the characterization of the rain-and ice-layer Doppler velocities.
Abstract. Ground-based observatories use multisensor observations to characterize cloud and precipitation properties. One of the challenges is how to design strategies to best use these observations to understand these properties and evaluate weather and climate models. This paper introduces the Cloud-resolving model Radar SIMulator (CR-SIM), which uses output from high-resolution cloud-resolving models (CRMs) to emulate multiwavelength, zenith-pointing, and scanning radar observables and multisensor (radar and lidar) products. CR-SIM allows for direct comparison between an atmospheric model simulation and remote-sensing products using a forward-modeling framework consistent with the microphysical assumptions used in the atmospheric model. CR-SIM has the flexibility to easily incorporate additional microphysical modules, such as microphysical schemes and scattering calculations, and expand the applications to simulate multisensor retrieval products. In this paper, we present several applications of CR-SIM for evaluating the representativeness of cloud microphysics and dynamics in a CRM, quantifying uncertainties in radar–lidar integrated cloud products and multi-Doppler wind retrievals, and optimizing radar sampling strategy using observing system simulation experiments. These applications demonstrate CR-SIM as a virtual observatory operator on high-resolution model output for a consistent comparison between model results and observations to aid interpretation of the differences and improve understanding of the representativeness errors due to the sampling limitations of the ground-based measurements. CR-SIM is licensed under the GNU GPL package and both the software and the user guide are publicly available to the scientific community.
Large spatial heterogeneities in shallow convection result in uncertainties in estimations of domain‐averaged cloud fraction profiles (CFP). This issue is addressed by using large eddy simulations of shallow convection over land coupled with a radar simulator. Results indicate that zenith profiling observations are inadequate to provide reliable CFP estimates. Use of scanning cloud radar (SCR), performing a sequence of cross‐wind horizon‐to‐horizon scans, is not straightforward due to the strong dependence of radar sensitivity to target distance. An objective method for estimating domain‐averaged CFP is proposed that uses observed statistics of SCR hydrometeor detection with height to estimate optimum sampling regions. This method shows good agreement with the model CFP. Results indicate that CFP estimates require more than 35 min of SCR scans to converge on the model domain average. The proposed technique is expected to improve our ability to compare model output with cloud radar observations in shallow cumulus cloud conditions.
Abstract. Multi-Doppler-radar network observations have been used in different configurations over the last several decades to conduct three-dimensional wind retrievals in mesoscale convective systems. Here, the impacts of the selected radar volume coverage pattern (VCP), the sampling time for the VCP, the number of radars used, and the added value of advection correction on the retrieval of the vertical air motion in the upper part of convective clouds are examined using the Weather Research and Forecasting (WRF) model simulation, the Cloud Resolving Model Radar SIMulator (CR-SIM), and a three-dimensional variational multi-Doppler-radar retrieval technique. Comparisons between the model truth (i.e., WRF kinematic fields) and updraft properties (updraft fraction, updraft magnitude, and mass flux) retrieved from the CR-SIM-generated multi-Doppler-radar field are used to investigate these impacts. The findings are that (1) the VCP elevation strategy and sampling time have a significant effect on the retrieved updraft properties above 6 km in altitude; (2) 2 min or shorter VCPs have small impacts on the retrievals, and the errors are comparable to retrievals using a snapshot cloud field; (3) increasing the density of elevation angles in the VCP appears to be more effective to reduce the uncertainty than an addition of data from one more radar, if the VCP is performed in 2 min; and (4) the use of dense elevation angles combined with an advection correction applied to the 2 min VCPs can effectively improve the updraft retrievals, but for longer VCP sampling periods (5 min) the value of advection correction is challenging. This study highlights several limiting factors in the retrieval of upper-level vertical velocity from multi-Doppler-radar networks and suggests that the use of rapid-scan radars can substantially improve the quality of wind retrievals if conducted in a limited spatial domain.
The scanning Atmospheric Radiation Measurement (ARM) Program cloud radars (SACRs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30-km radius of the ARM fixed and mobile sites. Here, the postprocessing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the hemispherical sky range-height indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step toward the utilization of SACR measurements for cloud research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.