The isothermal titration calorimetry (ITC) technique supported by potentiometric titration data was used to study the interaction of zinc ions with pH buffer substances, namely 2-(N-morpholino)ethanesulfonic acid (Mes), piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes), and dimethylarsenic acid (Caco). The displacement ITC titration method with nitrilotriacetic acid as a strong, competitive ligand was applied to determine conditional-independent thermodynamic parameters for the binding of Zn(II) to Mes, Pipes, and Caco. Furthermore, the relationship between the proposed coordination mode of the buffers and the binding enthalpy has been discussed.
The aim of this work was to find a relationship between physicochemical properties of the oxovanadium(IV) complexes, namely [VO(ODA)(H2O)2], [VO(ODA)(phen)]·1.5H2O and [VO(ODA)(bipy)]·2H2O (ODA = oxydiacetate) as well as [VO(H2O)5](2+), and their biological activity. A potentiometric titration method has been used to characterize the stability of the complexes in aqueous solutions. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the NBT assay as well as a cyclic voltammetry (CV) technique. Additionally, the investigations of the antioxidant properties of the complexes were complemented by studying their reactivity towards organic radicals (the ABTS and DPPH tests). Finally, the biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Hippocampal neuronal cell line HT22 (the MTT and LDH tests). The obtained results showed that all the compounds under study display antioxidant properties but a concentration-depended protective effect against the oxidative damage was found for [VO(ODA)(bipy)]·2H2O only.
Potentiometric (PT) and conductometric (CT) titration methods have been used to determine the stoichiometry and formation constants in water for a series of ternary complexes of Co(II) and Ni(II) involving the oxydiacetate anion (ODA) and 1,10-phenanthroline (phen) or 2,2′-bipyridine (bipy) ligands, namely [Co(ODA)(phen)(H2O)], [Co(ODA)(bpy)(H2O)], [Ni(ODA)(phen)(H2O)] and [Ni(ODA)(bpy)(H2O)]. The ternary complex formation process was found to take place in a stepwise manner in which the oxydiacetate ligand acts as a primary ligand and the phen or bipy ligands act as auxiliary ones. The stability of the ternary complexes formed is discussed in the relation to the corresponding binary ones. Furthermore, the kinetics of the substitution reactions of the aqua ligands in the coordination sphere of the Ni-ODA and Co-ODA complexes to phen or bipy were studied by the stopped-flow method. The kinetic measurements were performed in the 288–303 K temperature range, at a constant concentration of phen or bipy and at seven different concentrations of the binary complexes (4–7 mM). The influence of experimental conditions and the kind of the auxiliary ligands (phen/bipy) on the substitution rate was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.