Lamin proteins are type V intermediate filament proteins (IFs) located inside the cell nucleus. They are evolutionarily conserved and have similar domain organization and properties to cytoplasmic IFs. Lamins provide a skeletal network for chromatin, the nuclear envelope, nuclear pore complexes and the entire nucleus. They are also responsible for proper connections between the karyoskeleton and structural elements in the cytoplasm: actin and the microtubule and cytoplasmic IF networks. Lamins affect transcription and splicing either directly or indirectly. Translocation of active genes into the close proximity of nuclear lamina is thought to result in their transcriptional silencing. Mutations in genes coding for lamins and interacting proteins in humans result in various genetic disorders, called laminopathies. Human genes coding for A-type lamin (LMNA) are the most frequently mutated. The resulting phenotypes include muscle, cardiac, neuronal, lipodystrophic and metabolic pathologies, early aging phenotypes, and combined complex phenotypes. The Drosophila melanogaster genome codes for lamin B-type (lamin Dm), lamin A-type (lamin C), and for LEM-domain proteins, BAF, LINC-complex proteins and all typical nuclear proteins. The fruit fly system is simpler than the vertebrate one since in flies there is only single lamin B-type and single lamin A-type protein, as opposed to the complex system of B- and A-type lamins in Danio, Xenopus and Mus musculus. This offers a unique opportunity to study laminopathies. Applying genetic tools based on Gal4 and in vitro nuclear assembly system to the fruit fly model may successfully advance knowledge of laminopathies. Here, we review studies of the laminopathies in the fly model system.Electronic supplementary materialThe online version of this article (10.1186/s11658-018-0093-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.