TPUS is an accessible imaging method, which confirms the typical localization of changes of HS, and together with AUS it allows for the proper differentiation of HS from an anal fistula or an abscess.
The aim of the study was to present a method for assessing the condition of cell culture by measuring the impedance of cells cultured in the presence of nickel. For this purpose, an impedance measurement technique using nickel comb capacitors was used. The capacitor electrodes were made using a thin film magnetron sputtering. In the experimental part, the culture of cells of mouse fibroblasts on the prepared substrate was performed. The cell culture lasted 43 hours and showed that the presented technique allows it to be used to analyze the effect of nickel on cells.
This paper explores the possibility of using the impedance measurement method used to monitor morphological changes in culture cells for use in cultures in the presence of an electromagnetic field generated by a mobile phone. For this purpose, we used Electric Cell–Substrate Impedance Sensing (ECIS), which is a real-time, label-free, impedance-based method to study cell behaviors in tissue culture. As part of the work, a device enabling the connection in a climatic chamber was prepared without the need to interfere with environmental conditions, and a test culture of mouse fibroblasts was performed. The device based on the Arduino UNO programmable platform worked like a mobile phone. During cell proliferation, it was connected to the device three times and a change in electrical parameters in the measuring system was observed. During the phone call, there was a clear change in the values of the measured parameters. However, analysis of the obtained results indicated that there was little or no effect of the presence of the electromagnetic field on the cell culture, while the observed changes in the values of impedance, resistance, and capacitance are most likely due to the separation of positive and negative medium ions in the electromagnetic field. The application of the presented method seems possible; however, in order to eliminate the separation of ions, a different type of antenna should be designed to emit a homogeneous field to the entire well.
This paper presents a test stand for testing alternating current electrical parameters of Cu–SiO2 multilayer nanocomposite structures obtained by the dual-source non-reactive magnetron sputtering method (resistance, capacitance, phase shift angle, and dielectric loss angle tangent δ). In order to confirm the dielectric nature of the test structure, measurements in the temperature range from room temperature to 373 K were carried out. The alternating current frequencies in which the measurements were made ranged from 4 Hz to 7.92 MHz. To improve the implementation of measurement processes, a program was written to control the impedance meter in the MATLAB environment. Structural studies by SEM were conducted to determine the effect of annealing on multilayer nanocomposite structures. Based on the static analysis of the 4-point method of measurements, the standard uncertainty of type A was determined, and taking into account the manufacturer’s recommendations regarding the technical specification, the measurement uncertainty of type B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.