BackgroundFriedewald's formula for the estimation of LDL-C concentration is the most often used formula in clinical practice. A recent formula by Anandaraja and colleagues for LDL-C estimation still needs to be evaluated before it is extensively applied in diagnosis. In the present study we validated existing formulas and derived a more accurate formula to determine LDL-C in a Serbian population.MethodsOur study included 2053 patients with TG ≤ 4.52 mmol/L. In an initial group of 1010 patients, Friedewald's and Anandaraja's formulas were compared to a direct homogenous method for LDL-C determination. The obtained results allowed us to modify Friedewald's formula and apply it in a second group of patients.ResultsThe mean LDL-C concentrations were 3.9 ± 1.09 mmol/L, 3.63 ± 1.06 mmol/L and 3.72 ± 1.04 mmol/L measured by a direct homogenous assay (D-LDL-C), calculated by Friedewald's formula (F-LDL-C) and calculated by Anandaraja's formula (A-LDL-C), respectively in the 1010 patients. The Student's paired t-test showed that D-LDL-C values were significantly higher than F-LDL-C and A-LDL-C values (p < 0.001). The Passing-Bablok regression analysis indicated good correlation between calculated and measured LDL-Cs (r > 0.89). Using lipoprotein values from the initial group we modified Friedewald's formula by replacing the term 2.2 with 3. The new modified formula for LDL-C estimation (S-LDL-C) showed no statistically significant difference compared to D-LDL-C. The absolute bias between these two methods was -0.06 ± 0.37 mmol/L with a high correlation coefficient (r = 0.96).ConclusionsOur modified formula for LDL-C estimation appears to be more accurate than both Friedewald's and Anandaraja's formulas when applied to a Serbian population.
A direct and an indirect relationship between paraoxonase 1 (PON1) and atherosclerosis exists. Given PON1's physical location within high‐density lipoprotein (HDL) particles and its recognized enzyme activity, it is certainly reasonable to suggest that PON1 facilitates the antiatherogenic nature of HDL particles. PON1 also plays a role in regulating reverse cholesterol transport, antioxidative, anti‐inflammatory, antiapoptotic, vasodilative, and antithrombotic activities and several endothelial cell functions. HDL dysfunctionality is a more recent issue and seems to be centered on pathological conditions affecting HDL structure and size profiles. This review is focused on the role of PON1 status in different atherosclerosis‐related diseases that we have studied over the last twenty years (coronary heart disease, acute ischemic stroke, diabetes mellitus type 2, end‐stage renal disease, chronic obstructive pulmonary disease, and sarcoidosis) with the aim to determine the true value of PON1 as a biomarker. The role of PON1 in cancer is also covered, as risk factors and mechanisms underlying both atherosclerosis and cancer share common features.
Pregnancy is associated with alterations in low-density lipoprotein (LDL) and high-density lipoprotein (HDL) subclasses, but the exact pattern of these variations remains controversial. This study investigates longitudinal changes of plasma LDL and HDL particles distributions during the course of normal pregnancy, as well as associations of maternal LDL and HDL subclasses distributions before delivery with parameters of newborn size. Blood samples were collected from 41 healthy pregnant women throughout entire pregnancy, before delivery and 7 weeks postpartum. LDL and HDL subclasses were determined by gradient gel electrophoresis, while other biochemical parameters were measured by standard laboratory methods. During gestation LDL size significantly decreased (P < 0.001), due to reduction in relative proportion of LDL I (P < 0.01) and increase of LDL II (P < 0.001) and IIIA (P < 0.05) subclasses. In the same time, HDL size and proportions of HDL 2a particles significantly decreased (P < 0.001), with concomitant increase of HDL 3b and 3c subclasses (P < 0.05). Observed alterations were associated with changes in serum triglyceride levels. Rearrangement in LDL subclasses distribution during gestation was transient, while postpartum HDL subclasses distribution remained shifted toward smaller particles. Higher proportion of LDL IVB in maternal plasma before delivery was an independent predictor of smaller birth weights and lengths, while higher proportions of LDL IVB and HDL 2a subclasses were independent determinants of newborns' smaller head circumferences. Routine gestational and prenatal care in otherwise normal pregnancy could be complemented with evaluation of LDL and HDL particles distribution in order to ensure an adequate size of the newborn.
IntroductionDyslipidaemia contributes to the occurrence of colorectal cancer (CRC). We hypothesized that qualitative changes of lipoproteins are associated with the risk for CRC development. This study analyses low-density lipoprotein (LDL) and high-density lipoprotein (HDL) diameters, as well as distribution of LDL and HDL subclasses in patients with CRC, with an aim to determine whether advanced lipid testing might be useful in predicting the risk for the onset of this malignancy.Materials and methodsThis case-control study included 84 patients with newly diagnosed CRC and 92 controls. Gradient gel electrophoresis was applied for separation of lipoprotein subclasses and for LDL and HDL diameters determination. Lipid parameters were measured using routine enzymatic methods.ResultsTotal cholesterol, HDL and LDL-cholesterol were significantly lower in CRC patients compared to controls (4.47 mmol/L vs. 5.63 mmol/L; 0.99 mmol/L vs. 1.27 mmol/L; 2.90 mmol/L vs. 3.66 mmol/L; P < 0.001, respectively). Patients had significantly smaller LDL (25.14 nm vs. 26.92 nm; P < 0.001) and HDL diameters (8.76 nm vs. 10.17 nm; P < 0.001) and greater proportion of small, dense LDL particles (54.0% vs. 52.9%; P = 0.044) than controls. Decreased LDL and HDL diameters were independent predictors of CRC (OR = 0.5, P = 0.001 and OR = 0.5, P = 0.008, respectively), and alongside with age and HDL-cholesterol concentrations formed the optimal cost-effective model, providing adequate discriminative abilities for CRC (AUC = 0.89) and correct patients classification (81%).ConclusionsPatients with CRC have decreased LDL and HDL diameters and increased proportion of smaller particles. LDL and HDL diameters determination could be useful in assessing the risk for CRC development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.