Marine autonomy is a field receiving a high degree of interest for its many potential applications in terms of commerce, crew safety, and the military. A successful autonomous vessel depends on a sophisticated degree of situational awareness facilitated by sensors. We are investigating sub-THz radar sensors for this purpose, with the primary goal being the characterization of sea clutter and targets in terms of both amplitude and Doppler statistics at frequencies spanning 24 to 350 GHz, where presently there is a lack of data. Sub-THz frequencies are of particular interest due to improved range and Doppler resolutions, and reduced sensor size, factors expected to be critical in enabling anomaly detection in the dynamic marine environment. As part of this work, a new 207 GHz frequency modulated continuous wave (FMCW) radar is being developed for the collection of clutter and target phenomenology data. The architecture uses a direct digital synthesis (DDS) generated chirp which is upconverted onto a low phase noise microwave LO then frequency multiplied by 24 to the carrier frequency. Twin Gaussian optics lens antennas (GOLAs) are used for transmit and receive with beamwidths of 2 • , with adjustable linear polarization. The radar head is gimbal mounted for raster scanning RCS maps or for use in staring mode Doppler measurements. A chirp bandwidth of 4 GHz enables range bins of a few centimeters and high speed chirps enable a maximum unambiguous velocity of ±5 m/s.
Sea clutter data at millimeter wave frequencies are quite limited in the literature. Recent advancements in millimeter wave radar technology have created a potential for its use in maritime surveillance and autonomy. Hence, collecting data at this frequency range is of great interest to both academia and industry. This study reports on a field trial conducted at St Andrews in winter 2020 to collect littoral sea clutter data using K-band (24 GHz) and W-band (94 GHz) radar systems. Extensive data collection was done during the trial, where this work specifically concentrates on analysis of the amplitude characteristics of the sea clutter returns. Analysis of the dataset shows that the radar backscatter was heavily dominated by seaspikes. The modal normalized radar cross section (NRCS) values for Bragg, burst and whitecap scattering are measured to be -47, -30 and -17 dB respectively at 24 GHz in horizontal polarization and -48, -26 and -12 dB respectively at 94 GHz in circular polarization, measured at grazing angles of 1-3°. The backscatter from the smooth surface is found to be below the noise floor equivalent NRCS (-65 dB). Also, the power spectrum analysis of range-time intensity plots is discussed, revealing information on the sea surface dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.