Background: It could be seen in the previous decades that Machine Learning (ML) has a huge variety of possible implementations in medicine and can be of great use. Nevertheless, cardiovascular diseases cause about a third of the total global deaths. Does ML work in the cardiology domain and what is the current progress in this regard? To answer this question, we present a systematic review aiming at 1) identifying studies where machine learning algorithms were applied in the domain of cardiology; 2) providing an overview based on the existing literature about the state-of-the-art ML algorithms applied in cardiology. Methods: For organizing this review, we adopted the PRISMA statement. We used PubMed as the search engine and identified the search keywords as “Machine Learning”, “Data Mining”, “Cardiology”, and “Cardiovascular” in combinations. Scientific articles and conference papers published between 2013-2017 reporting about implementations of ML algorithms in the domain of cardiology have been included in this review. Results: In total, 27 relevant papers were included. We examined four aspects: the aims of ML systems, the methods, datasets, and evaluation metrics. The major part of the paper was aimed at predicting the risk of mortality. A promising branch of Machine Learning, the ‘Reinforcement Learning’, was also never proposed in the observed papers. Tree-based ensembles are common and show good results, whereas deep neural networks are poorly represented. Most papers (20 of 27) have used datasets that are hardly available for other researchers, e.g. unpublished local registries. We also identified 28 different metrics for model evaluation. This variety of metrics makes it difficult to compare the results of different researches. Conclusion: We suppose that this systematic review will be helpful for researchers developing medical machine learning systems and for cardiology in particular.
Graph theory is a well-established theory with many methods used in mathematics to study graph structures. In the field of medicine, electronic health records (EHR) are commonly used to store and analyze patient data. Consequently, it seems straightforward to perform research on modeling EHR data as graphs. This systematic literature review aims to investigate the frontiers of the current research in the field of graphs representing and processing patient data. We want to show, which areas of research in this context need further investigation. The databases MEDLINE, Web of Science, IEEE Xplore and ACM digital library were queried by using the search terms health record, graph and related terms. Based on the "Preferred Reporting Items for Systematic Reviews and Meta-Analysis" (PRISMA) statement guidelines the articles were screened and evaluated using full-text analysis. Eleven out of 383 articles found in systematic literature review were finally included for analysis in this literature review. Most of them use graphs to represent temporal relations, often representing the connection among laboratory data points. Only two papers report that the graph data were further processed by comparing the patient graphs using similarity measurements. Graphs representing individual patients are hardly used in research context, only eleven papers considered such kind of graphs in their investigations. The potential of graph theoretical algorithms, which are already well established, could help increasing this research field, but currently there are too few papers to estimate how this area of research will develop. Altogether, the use of such patient graphs could be a promising technique to develop decision support systems for diagnosis, medication or therapy of patients using similarity measurements or different kinds of analysis.
This paper is an extension of the work originally presented in the 16th International Conference on Wearable, Micro and Nano Technologies for Personalized Health. Despite using electronic medical records, free narrative text is still widely used for medical records. To make data from texts available for decision support systems, supervised machine learning algorithms might be successfully applied. In this work, we developed and compared a prototype of a medical data extraction system based on different artificial neural network architectures to process free medical texts in the Russian language. Three classifiers were applied to extract entities from snippets of text. Multi-layer perceptron (MLP) and convolutional neural network (CNN) classifiers showed similar results to all three embedding models. MLP exceeded convolutional network on pipelines that used the embedding model trained on medical records with preliminary lemmatization. Nevertheless, the highest F-score was achieved by CNN. CNN slightly exceeded MLP when the biggest word2vec model was applied (F-score 0.9763).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.