We consider the car key localization task using ultra-wideband (UWB) signal measurements. Given labeled data for a certain car, we train a deep classifier to make the prediction about the new points. However, due to the differences in car models and possible environmental effects that might alter the signal propagation, data collection requires considerable effort for each car. In particular, we consider a situation where the data for the new car is collected only in one environment, so we have to utilize the measurements in other environments from a different car. We propose a framework based on generative adversarial networks (GANs) to generate missing parts of the data and train the classifier on it, mitigating the necessity to collect the real data. We show that the model trained on the synthetic data performs better than the baseline trained on the collected measurements only. Furthermore, our model closes the gap to the level of performance achieved when we would have the information about the new car in multiple environments by 35%.
Neural networks are known to be sensitive to adversarial perturbations. To investigate this undesired behavior we consider the problem of computing the distance to the decision boundary (DtDB) from a given sample for a deep neural net classifier. In this work we present a procedure where we solve a convex quadratic programming (QP) task to obtain a lower bound on the DtDB. This bound is used as a robustness certificate of the classifier around a given sample. We show that our approach provides better or competitive results in comparison with a wide range of existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.