COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles’ inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.
Monoclonal antibodies are increasingly used to prevent and treat viral infections, playing a pivotal role in pandemic response efforts. Antibody secreting cells (ASCs, plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methodologies to study antigen-specific ASCs either have low throughput, require expensive and labour-intensive screening or are technically demanding and therefore not accessible to the wider research community. Here, we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs: we combine microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained anti-SARS-CoV-2 monoclonal antibodies with high affinity (pM) and neutralising capacity (<100 ng/mL) in two weeks with a high hit rate (>85%). By facilitating access into the underexplored ASC compartment, we enable fast and efficient antibody discovery as well as immunological studies into the generation of protective antibodies.
Enzymes are effective biological catalysts that accelerate almost all metabolic reactions in living organisms. Synthetic modulators of enzymes are useful tools for the study of enzymatic reactions and can provide starting points for the design of new drugs. Here, we report on the discovery of a class of biologically active compounds that covalently modifies lysine residues in human liver pyruvate kinase (PKL), leading to allosteric activation of the enzyme (EC 50 = 0.29 μM). Surprisingly, the allosteric activation control point resides on the lysine residue K282 present in the catalytic site of PKL. These findings were confirmed by structural data, MS/MS experiments, and molecular modelling studies. Altogether, our study provides a molecular basis for the activation mechanism and establishes a framework for further development of human liver pyruvate kinase covalent activators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.