Fourteen tree-ring chronologies developed from 788 peatland Scots pines sampled at sites in Estonia, Belarus and Sweden were compared for common growth trends and possible links to regional climate dynamics. Several synchronous growth release events were detected, especially during the 1910s, 1930s, and around 1970 and 1990, indicating that hydrological shifts and associated tree growth responses have been governed by similar forcing mechanisms, at least during the 20th century. In general, the best agreements were observed between the tree populations from Estonia and Belarus, but synchronous growth changes could also be detected between the Swedish and Estonian material. Trends detected in single tree-ring chronologies may be linked to local peatland management or land-use changes, whereas common variations detected at multiple sites are more likely linked to hydrological changes in the peatlands associated with regional climate dynamics. Understanding the links between climate and processes that involve peatland hydrology and vegetation responses is important since peatland ecosystems are key players in the global carbon cycle.
Key message
An exceptionally high number of blue rings were formed within and between Scots pine trees from Estonia in 1976: a year that is well known for its outstanding summer heatwave over Western Europe, but its extreme autumnal cooling over Eastern Europe has so far been neglected in scientific literature.
Abstract
‘Blue rings’ (BRs) are visual indicators of less lignified cell walls typically formed towards the end of a tree’s growing season. Though BRs have been associated with ephemeral surface cooling, often following large volcanic eruptions, the intensity of cold spells necessary to produce BRs, as well as the consistency of their formation within and between trees still remains uncertain. Here, we report an exceptionally high BR occurrence within and between Scots pine (Pinus sylvestris L.) trees at two sites in Estonia, including the first published whole-stem analysis for BRs. Daily meteorological measurements from a nearby station allowed us to investigate the role temperature has played in BR formation since the beginning of the twentieth century. The single year in which BRs were consistently formed within and amongst most trees was 1976. While the summer of 1976 is well known for an exceptional heatwave in Northwest Europe, mean September and October temperatures were remarkably low over Eastern Europe, and 3.8 °C below the 1961–1990 mean at our sites. Our findings contribute to a better eco-physiological interpretation of BRs, and further demonstrate their ability to reveal ephemeral cooling not captured by dendrochronological ring width and latewood density measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.