We analyze spin-up/spin-down of the neutron star in Be X-ray binary system GX 304-1 observed by Swift/XRT and Fermi/GBM instruments in the period of the source activity from April 2010 to January 2013 and discuss possible mechanisms of angular momentum transfer to/from the neutron star. We argue that the neutron star spin-down at quiescent states of the source with an X-ray luminosity of L x ∼ 10 34 erg s −1 between a series of Type I outbursts and spin-up during the outbursts can be explained by quasi-spherical settling accretion onto the neutron star. The outbursts occur near the neutron star periastron passages where the density is enhanced due to the presence of an equatorial Be-disc tilted to the orbital plane. We also propose an explanation to the counterintuitive smaller spin-up rate observed at higher luminosity in a double-peak Type I outburst due to lower value of the specific angular momentum of matter captured from the quasi-spherical wind from the Be-star by the neutron star moving in an elliptical orbit with eccentricity e 0.5.
Four hard X-ray sources from the INTEGRAL and Swift catalogs have been identified. X-ray and optical spectra have been obtained for each of the objects being studied by using data from the INTEGRAL, Swift, ROSAT, and Chandra X-ray observatories as well as observations with the RTT-150 and AZT-33IK optical telescopes. Two sources (SWIFT J1553.6+2606 and SWIFT J1852.2+8424) are shown to be extragalactic in nature: the first is a quasar, while the registered X-ray flux from the second is the total emission from two Seyfert 1 galaxies at redshifts 0.1828 and 0.2249. The source IGR J22534+6243 resides in our Galaxy and is an X-ray pulsar with a period of ∼ 46.674 s that is a member of a high-mass X-ray binary, probably with a Be star. The nature of yet another Galactic source, SWIFT J1852.8+3002, is not completely clear and infrared spectroscopy is needed to establish it.
Detection of a composite flux in photometry can serve as an indication of a photometrically unresolved binarity and can contribute to the parameterization of the components of binary systems. A main goal of the present study is to develop a method of automatic photometric detection of binaries, based on multi-color photometry, theoretical stellar spectral energy distributions and general understanding of binary evolution. In particular, we consider an ultraviolet photometry where, in combination with optical and infrared photometry, interstellar reddening can be easier distinguished from temperature reddening.The following procedure is applied to achieve the declared goal. One can compose possible pairs of components, based on evolution concept. This can be done for various stages of binary evolution. Theoretical spectral energy distributions and response functions of ultraviolet photometric bands in appropriate sky surveys allow us to compute color-indices of such pairs, when they are unresolved, as well as of single stars. Usage of an interstellar extinction law gives us theoretical color-indices of reddened objects, both single stars and unresolved binaries. When plotted on a multidimensional color space, they allow us to indicate areas, where unresolved binaries can be easily separated from single stars, and identify binaries among objects, crossmatched in photometric surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.