Background Studies on a new coronavirus disease (COVID-19) show the elevation of liver enzymes and liver fibrosis index (FIB-4) independently on pre-existing liver diseases. It points to increased liver fibrogenesis during acute COVID-19 with possible long-term consequences. This study aimed to assess liver fibrosis in COVID-19 patients by serum hyaluronic acid (HA) and FIB-4. Methods The study included the acute COVID-19 group (66 patients, 50% females, mean age 58.3 ± 14.6), the post-COVID group (58 patients in 3–6 months after the recovery, 47% females, mean age 41.2 ± 13.4), and a control group (17 people, 47% females, mean age 42.8 ± 11.0). Ultrasound elastography was performed in the post-COVID and control groups. Results Sixty-five percent of the acute COVID-19 group had increased FIB-4 (> 1.45), and 38% of patients had FIB-4 ≥ 3.25. After matching by demographics, 52% of acute COVID-19 and 5% of the post-COVID group had FIB-4 > 1.45, and 29% and 2% of patients had FIB-4 ≥ 3.25, respectively. Increased serum HA (≥ 75 ng/ml) was observed in 54% of the acute COVID-19 and 15% of the post-COVID group. In the acute COVID-19 group, HA positively correlated with FIB-4, AST, ALT, LDH, IL-6, and ferritin and negatively with blood oxygen saturation. In the post-COVID group, HA did not correlate with FIB-4, but it was positively associated with higher liver stiffness and ALT. Conclusion More than half of acute COVID-19 patients had increased serum HA and FIB-4 related to liver function tests, inflammatory markers, and blood oxygen saturation. It provides evidence for the induction of liver fibrosis by multiple factors during acute COVID-19. Findings also indicate possible liver fibrosis in about 5% of the post-COVID group.
The human microbiota is a variety of different microorganisms. The composition of microbiota varies from host to host, and it changes during the lifetime. It is known that microbiome may be changed because of a diet, bacteriophages and different processes for example, such as inflammation. Like all other areas of medicine, there is a continuous growth in the area of microbiology. Different microbes can reside in all sites of a human body, even in locations that were previously considered as sterile; for example, liver, pancreas, brain and adipose tissue. Presently one of the etiological factors for liver disease is considered to be pro-inflammatory changes in a host’s organism. There are lot of supporting data about intestinal dysbiosis and increased intestinal permeability and its effect on development of liver disease pointing to the gut–liver axis. The gut–liver axis affects pathogenesis of many liver diseases, such as chronic hepatitis B, chronic hepatitis C, alcoholic liver disease, non-alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. Gut microbiota has been implicated in the regulation of brain health, emphasizing the gut–brain axis. Also, experiments with mice showed that microorganisms have significant effects on the blood–brain barrier integrity. Microbiota can modulate a variety of mechanisms through the gut–liver axis and gut–brain axis. Normal intestinal flora impacts the health of a host in many positive ways, but there is now significant evidence that intestinal microbiota, especially altered, have the ability to impact the pathologies of many diseases through different inflammatory mechanisms. At this point, many of the pathophysiological reactions in case of microbial disbyosis are still unclear.
Gut colonization with ESBL-producing Enterobacteriaceae may increase UC disease activity. Further research is needed to analyze the possible confounding factors that could contribute toward this outcome.
We confirmed the association of the 9 loci (21q21.1, 1p36.13, NKX2-3, MST1, the HLA region, IL10, JAK2, ORMDL3, and IL23R) with UC in the Lithuanian-Latvian population. SNP-SNP interaction analyses showed that the combination of SNPs in the PTPN22 (rs2476601) and C13orf31 (rs3764147) genes increase the risk for UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.