Complex piperidinyl heterocycles (for example, 2) were accessed by using a novel intramolecular formal [3+3] cycloaddition reaction of vinylogous amides tethered with enals (for example, 1). This method has been applied to a formal total synthesis of (+)‐gephyrotoxin (3).
A detailed account on chiral secondary amine salt promoted enantioselective intramolecular formal aza-[3 + 3] cycloadditions is described here for the first time. The dependence of enantioselectivity on the structural feature of these chiral amines is thoroughly investigated. This study also reveals a very interesting reversal of the stereochemistry in the respective cycloadducts obtained using C(1)- and C(2)-symmetric amine salts. In addition, the influence of solvents, counteranions, and temperatures on the enantioselectivity is described, and a unified mechanistic model based on experimental results as well as semiempirical calculations is proposed.
A detailed account regarding a formal [3 + 3] cycloaddition method using 4-hydroxy-2-pyrones and 1,3-diketones is described here. This formal cycloaddition reaction or annulation reaction is synthetically useful for constructing 2H-pyranyl heterocycles. The usage of alpha,beta-unsaturated iminium salts is significant in controlling competing reaction pathways to give exclusively 2H-pyrans. Most significantly, experimental evidence is provided to support the mechanism of this reaction that involves a sequential Knoevenagel condensation and a reversible 6pi-electron electrocyclic ring-closure of 1-oxatrienes.
Total syntheses of indoloquinolizidine alkaloid (+/-)-, R-(+)-, and S-(-)-deplancheine are described here. The synthesis features an enantioselective intramolecular formal aza-[3 + 3] cycloaddition for the construction of the quinolizidine CD-ring. This application serves to introduce a new synthetic strategy for the synthesis of indoloquinolizidine alkaloids.
[structure: see text] A stereodivergent approach toward total syntheses of Coccinellidae defensive alkaloids is described. These syntheses feature a highly diastereoselective intramolecular aza-[3 + 3] annulation strategy, which represents a de novo approach to this family of natural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.