Tissue-resident memory T cells (TRM cells) have been widely characterized in infectious disease settings; however, their role in mediating immunity to cancer remains unknown. Here we report that skin-resident memory T cell responses to melanoma are generated naturally as a result of autoimmune vitiligo. Melanoma antigen-specific TRM cells resided predominantly in melanocyte-depleted hair follicles and were maintained without recirculation or replenishment from the lymphoid compartment. These cells expressed CD103, CD69, and CLA, but lacked PD-1 or LAG-3, and were capable of making IFN-γ. CD103 expression on CD8 T cells was required for establishment of TRM cells in skin, but was dispensable for vitiligo development. Importantly, CD103+ CD8 TRM cells were critical for protection against melanoma re-challenge. This work establishes that CD103-dependent TRM cells play a key role in perpetuating anti-tumor immunity.
Regulatory T cells (Treg) are critical mediators of immunosuppression in established tumors, although little is known about their role in restraining immunosurveillance during tumorigenesis. Here, we employ an inducible autochthonous model of melanoma to investigate the earliest Treg and CD8 effector T-cell responses during oncogene-driven tumorigenesis. Induction of oncogenic BRAF and loss of Pten in melanocytes led to localized accumulation of FoxP3 Tregs, but not CD8 T cells, within 1 week of detectable increases in melanocyte differentiation antigen expression. Melanoma tumorigenesis elicited early expansion of shared tumor/self-antigen-specific, thymically derived Tregs in draining lymph nodes, and induced their subsequent recruitment to sites of tumorigenesis in the skin. Lymph node egress of tumor-activated Tregs was required for their C-C chemokine receptor 4 (Ccr4)-dependent homing to nascent tumor sites. Notably, BRAF signaling controlled expression of Ccr4-cognate chemokines and governed recruitment of Tregs to tumor-induced skin sites. BRAF expression alone in melanocytes resulted in nevus formation and associated Treg recruitment, indicating that BRAF signaling is sufficient to recruit Tregs. Treg depletion liberated immunosurveillance, evidenced by CD8 T-cell responses against the tumor/self-antigen gp100, which was concurrent with the formation of microscopic neoplasia. These studies establish a novel role for BRAF as a tumor cell-intrinsic mediator of immune evasion and underscore the critical early role of Treg-mediated suppression during autochthonous tumorigenesis. This work provides new insights into the mechanisms by which oncogenic pathways impact immune regulation in the nascent tumor microenvironment. .
Acquired resistance to BRAFV600E inhibitors (BRAFi) in melanoma remains a common clinical obstacle, as is the case for any targeted drug therapy that can be developed given the plastic nature of cancers. While there has been significant focus on the cancer cell-intrinsic properties of BRAFi resistance, the impact of BRAFi resistance on host immunity has not been explored. Here we provide preclinical evidence that resistance to BRAFi in an autochthonous mouse model of melanoma is associated with restoration of myeloid-derived suppressor cells (MDSC) in the tumor microenvironment initially reduced by BRAFi treatment. In contrast to restoration of MDSC, levels of T regulatory cells remained reduced in BRAFi-resistant tumors. Accordingly, tumor gene expression signatures specific for myeloid cell chemotaxis and homeostasis reappeared in BRAFi-resistant tumors. Notably, MDSC restoration relied upon MAPK pathway reactivation and downstream production of the myeloid attractant CCL2 in BRAFi-resistant melanoma cells. Strikingly, while combination checkpoint blockade (anti-CTLA-4 + anti-PD-1) was ineffective against BRAFi-resistant melanomas, the addition of MDSC depletion/blockade (anti-Gr-1 + CCR2 antagonist) prevented outgrowth of BRAFi-resistant tumors. Our results illustrate how extrinsic pathways of immunosuppression elaborated by melanoma cells dominate the tumor microenvironment and highlight the need to target extrinsic as well as intrinsic mechanisms of drug resistance.
Summary Tumor-propagating cells (TPCs) share self-renewal properties with normal stem cells and drive continued tumor growth. However, mechanisms regulating TPC self-renewal are largely unknown, especially in embryonal rhabdomyosarcoma (ERMS)—a common pediatric cancer of muscle. Here, we used a zebrafish transgenic model of ERMS to identify a role for intracellular NOTCH1 (ICN1) in increasing TPCs by 23-fold. ICN1 expanded TPCs by enabling the de-differentiation of zebrafish ERMS cells into self-renewing myf5+ TPCs, breaking the rigid differentiation hierarchies reported in normal muscle. ICN1 also had conserved roles in regulating human ERMS self-renewal and growth. Mechanistically, ICN1 up-regulated expression of SNAIL1, a transcriptional repressor, to increase TPC number in human ERMS and to block muscle differentiation through suppressing MEF2C, a myogenic differentiation transcription factor. Our data implicate the NOTCH1/SNAI1/MEF2C signaling axis as a major determinant of TPC self-renewal and differentiation in ERMS, raising hope of therapeutically targeting this pathway in the future.
Resident memory (TRM) cells are a distinct tissue-localized T cell lineage that is crucial for protective immunity in peripheral tissues. While a great deal of effort has focused on defining their role in immunity to infections, studies now reveal TRM cells as a vital component of the host immune response to cancer. Characterized by cell-surface molecules including CD103, CD69, and CD49a, TRM-like tumor-infiltrating lymphocytes (TILs) can be found in a wide range of human cancers, where they portend improved prognosis. Recent studies in mouse tumor models have shown that TRM cells are induced by cancer vaccines delivered in peripheral tissue sites, or by the depletion of regulatory T cells. Such tumor-specific TRM cells are recognized as both necessary and sufficient for long-lived protection against tumors in peripheral tissue locations. TRM responses against tumor/self-antigens can concurrently result in the development of pathogenic TRM responses to self, with a growing number of autoimmune diseases and inflammatory pathologies being attributed to TRM responses. This review will recount the path to discovering the importance of resident memory CD8 T cells as they pertain to cancer immunity. In addition to highlighting key studies that directly implicate TRM cells in anti-tumor immunity, we will highlight earlier work that implicitly suggested their importance. Informed by studies in infectious disease models, and instructed by a clear role for TRM cells in autoimmunity, we will discuss strategies for therapeutically promoting TRM responses in settings where they don't naturally occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.