SUMMARY The signaling adapter p62 is a critical mediator of important cellular functions owing to its ability to establish interactions with various signaling intermediaries. Here we identify raptor as an interacting partner of p62. Thus, p62 is an integral part of the mTORC1 complex, and is necessary to mediate amino acid signaling for the activation of S6K1 and 4EBP1. p62 interacts in an amino acid-dependent manner with mTOR and raptor. In addition, p62 binds the Rags proteins and favors formation of the active Rag heterodimer that is further stabilized by raptor. Interestingly, p62 colocalizes with Rags at the lysosomal compartment and is required for the interaction of mTOR with Rag GTPases in vivo, and for translocation of the mTORC1 complex to the lysosome, a crucial step for mTOR activation.
The recognition of protein interaction sites is an important intermediate step toward identification of functionally relevant residues and understanding protein function, facilitating experimental efforts in that regard. Toward that goal, the authors propose a novel representation for the recognition of protein-protein interaction sites that integrates enhanced relative solvent accessibility (RSA) predictions with high resolution structural data. An observation that RSA predictions are biased toward the level of surface exposure consistent with protein complexes led the authors to investigate the difference between the predicted and actual (i.e., observed in an unbound structure) RSA of an amino acid residue as a fingerprint of interaction sites. The authors demonstrate that RSA prediction-based fingerprints of protein interactions significantly improve the discrimination between interacting and noninteracting sites, compared with evolutionary conservation, physicochemical characteristics, structure-derived and other features considered before. On the basis of these observations, the authors developed a new method for the prediction of protein-protein interaction sites, using machine learning approaches to combine the most informative features into the final predictor. For training and validation, the authors used several large sets of protein complexes and derived from them nonredundant representative chains, with interaction sites mapped from multiple complexes. Alternative machine learning techniques are used, including Support Vector Machines and Neural Networks, so as to evaluate the relative effects of the choice of a representation and a specific learning algorithm. The effects of induced fit and uncertainty of the negative (noninteracting) class assignment are also evaluated. Several representative methods from the literature are reimplemented to enable direct comparison of the results. Using rigorous validation protocols, the authors estimated that the new method yields the overall classification accuracy of about 74% and Matthews correlation coefficients of 0.42, as opposed to up to 70% classification accuracy and up to 0.3 Matthews correlation coefficient for methods that do not utilize RSA prediction-based fingerprints. The new method is available at http://sppider.cchmc.org.
Accurate prediction of relative solvent accessibilities (RSAs) of amino acid residues in proteins may be used to facilitate protein structure prediction and functional annotation. Toward that goal we developed a novel method for improved prediction of RSAs. Contrary to other machine learning-based methods from the literature, we do not impose a classification problem with arbitrary boundaries between the classes. Instead, we seek a continuous approximation of the real-value RSA using nonlinear regression, with several feed forward and recurrent neural networks, which are then combined into a consensus predictor. A set of 860 protein structures derived from the PFAM database was used for training, whereas validation of the results was carefully performed on several nonredundant control sets comprising a total of 603 structures derived from new Protein Data Bank structures and had no homology to proteins included in the training. Two classes of alternative predictors were developed for comparison with the regression-based approach: one based on the standard classification approach and the other based on a semicontinuous approximation with the so-called thermometer encoding. Furthermore, a weighted approximation, with errors being scaled by the observed levels of variability in RSA for equivalent residues in families of homologous structures, was applied in order to improve the results. The effects of including evolutionary profiles and the growth of sequence databases were assessed. In accord with the observed levels of variability in RSA for different ranges of RSA values, the regression accuracy is higher for buried than for exposed residues, with overall 15.3-15.8% mean absolute errors and correlation coefficients between the predicted and experimental values of 0.64-0.67 on different control sets. The new method outperforms classification-based algorithms when the real value predictions are projected onto two-class classification problems with several commonly used thresholds to separate exposed and buried residues. For example, classification accuracy of about 77% is consistently achieved on all control sets with a threshold of 25% RSA. A web server that enables RSA prediction using the new method and provides customizable graphical representation of the results is available at http://sable.cchmc.org.
SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function.
Owing to the use of evolutionary information and advanced machine learning protocols, secondary structures of amino acid residues in proteins can be predicted from the primary sequence with more than 75% per-residue accuracy for the 3-state (i.e., helix, beta-strand, and coil) classification problem. In this work we investigate whether further progress may be achieved by incorporating the relative solvent accessibility (RSA) of an amino acid residue as a fingerprint of the overall topology of the protein. Toward that goal, we developed a novel method for secondary structure prediction that uses predicted RSA in addition to attributes derived from evolutionary profiles. Our general approach follows the 2-stage protocol of Rost and Sander, with a number of Elman-type recurrent neural networks (NNs) combined into a consensus predictor. The RSA is predicted using our recently developed regression-based method that provides real-valued RSA, with the overall correlation coefficients between the actual and predicted RSA of about 0.66 in rigorous tests on independent control sets. Using the predicted RSA, we were able to improve the performance of our secondary structure prediction by up to 1.4% and achieved the overall per-residue accuracy between 77.0% and 78.4% for the 3-state classification problem on different control sets comprising, together, 603 proteins without homology to proteins included in the training. The effects of including solvent accessibility depend on the quality of RSA prediction. In the limit of perfect prediction (i.e., when using the actual RSA values derived from known protein structures), the accuracy of secondary structure prediction increases by up to 4%. We also observed that projecting real-valued RSA into 2 discrete classes with the commonly used threshold of 25% RSA decreases the classification accuracy for secondary structure prediction. While the level of improvement of secondary structure prediction may be different for prediction protocols that implicitly account for RSA in other ways, we conclude that an increase in the 3-state classification accuracy may be achieved when combining RSA with a state-of-the-art protocol utilizing evolutionary profiles. The new method is available through a Web server at http://sable.cchmc.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.