The present work combines experiment and theory to reveal the behavior of bromo-substituted-biphenyls after an electron attachment. We experimentally determine anion lifetimes using an electron attachment–magnetic sector mass spectrometer instrument. Branching ratios of dissociative electron attachment fragments on longer timescales are determined using the electron attachment–quadrupole mass spectrometer instrument. In all cases, fragmentation is low: Only the Br− and [M–Br]− ions are detected, and [M–H]− is observed only in the case of 4-Br-biphenyl and parent anion lifetimes as long as 165 µs are observed. Such lifetimes are contradictory to the dissociation rates of 2- and 4-bromobiphenyl, as measured by the pulse radiolysis method to be 3.2 × 1010 and >5 × 1010 s−1, respectively. The discrepancy is plausibly explained by our calculation of the potential energy surface of the dissociating anion. Isolated in vacuum, the bromide anion can orbit the polarized aromatic radical at a long distance. A series of local minima on the potential energy surface allows for a roaming mechanism prolonging the detection time of such weakly bound complex anions. The present results illuminate the behavior recently observed in a series of bromo-substituted compounds of biological as well as technological relevance.
Low-energy (0–15 eV) electron interactions with gas-phase 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) molecules are studied under single collision conditions using dissociative electron attachment spectroscopy. The experimental findings are supported by density functional theory calculations of the virtual orbital energies and energetics of the dissociative decays. Long-lived molecular negative ions F4-TCNQ− are detected in a wide electron energy range (0–3 eV) with electron detachment times in the range of milliseconds. Although plenty of decay channels are observed, their intensities are found to be very small (two to four orders of magnitude relative to the F4-TCNQ− signal). These findings prove that the structure of this strong electron-accepting molecule bearing an excess electron is robust in its electronic ground state, even when highly (up to 6 eV) vibrationally excited. As many as nine metastable fragment anions formed slowly (in the 16–23 µs range) are found in the negative ion mass spectrum of F4-TCNQ, as never observed before in compounds possessing high electron-accepting ability. The present results shed some light on microsecond dynamics of isolated F4-TCNQ molecules under conditions of excess negative charge, which are important for understanding the functionality of nanoscale devices containing this molecule as a structural element.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.