This article presents a novel combination of the Recursive Auto-Associative Memory model with the SensitivityBased Linear Learning Method. Training results on the syntactic trees dataset are presented, confirming that the application of the SBLLM method to the RAAM model results in very fast learning and yields clustering results of the same quality as the original RAAM model.
This article describes processing methods used for short amino acid sequences classification. The data processed are 9-symbols string representations of amino acid sequences, divided into 49 data sets -each one containing samples labeled as reacting or not with given enzyme. The goal of the classification is to determine for a single enzyme, whether an amino acid sequence would react with it or not. Each data set is processed separately. Feature selection is performed to reduce the number of dimensions for each data set. The method used for feature selection consists of two phases. During the first phase, significant positions are selected using Classification and Regression Trees. Afterwards, symbols appearing at the selected positions are substituted with numeric values of amino acid properties taken from the AAindex database. In the second phase the new set of features is reduced using a correlation-based ranking formula and Gram-Schmidt orthogonalization. Finally, the preprocessed data is used for training LS-SVM classifiers. SPDE, an evolutionary algorithm, is used to obtain optimal hyperparameters for the LS-SVM classifier, such as error penalty parameter C and kernel-specific hyperparameters. A simple score penalty is used to adapt the SPDE algorithm to the task of selecting classifiers with best performance measures values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.